• Bedka, K., E. M. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above-anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59, 18051824, https://doi.org/10.1175/1520-0469(2002)059<1805:EOTWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and J. Jelsema, 2016: Hurricane Hilda (EP102015): 6–13 August 2015. National Hurricane Center Tropical Cyclone Rep., 16 pp.

  • Blake, E. S., and D. A. Zelinsky, 2018: Hurricane Harvey (AL092017): 17 August–1 September 2017. National Hurricane Center Tropical Cyclone Rep., 16 pp.

  • Boggs, L. D., N. Liu, J. A. Riousset, F. Shi, S. Lazarus, M. Splitt, and H. Rassoul, 2018: Thunderstorm charge structures producing gigantic jets. Sci. Rep., 8, 18085, https://doi.org/10.1038/s41598-018-36309-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boggs, L. D., N. Liu, M. Peterson, S. Lazarus, M. Splitt, F. Lucena, A. Nag, and H. Rassoul, 2019: First observations of gigantic jets from geostationary orbit. Geophys. Res. Lett., 46, 39994006, https://doi.org/10.1029/2019GL082278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, A. B., and Coauthors, 2008: Global distributions and occurrence rates of transient luminous events. J. Geophys. Res., 113, A08306, https://doi.org/10.1029/2008JA013101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costantino, L., P. Heinrich, N. Mze, and A. Hauchecorne, 2015: Convective gravity wave propagation and breaking in the stratosphere: Comparison between WRF Model simulations and lidar data. Ann. Geophys., 33, 11551171, https://doi.org/10.5194/angeo-33-1155-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, P. H. Haynes, and T. P. Lane, 2018: The mechanisms leading to a stratospheric hydration by overshooting convection. J. Atmos. Sci., 75, 43834398, https://doi.org/10.1175/JAS-D-18-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2016: Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to cyclone intensity and the diurnal cycle. J. Atmos. Sci., 73, 545554, https://doi.org/10.1175/JAS-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368, https://doi.org/10.2151/jmsj1965.60.1_355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavrilov, N. M., and S. Fukao, 2004: Numerical and the MU radar estimations of gravity wave enhancement and turbulent ozone fluxes near tropopause. Ann. Geophys., 22, 38893898, https://doi.org/10.5194/angeo-22-3889-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546, https://doi.org/10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Heymsfield, G. M., R. H. Blackmer, and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA National Centers for Environmental Information, accessed 5 April 2020, https://doi.org/10.25921/82ty-9e16.

    • Crossref
    • Export Citation
  • Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, 2008: Upward electrical discharges from thunderstorms. Nat. Geosci., 1, 233237, https://doi.org/10.1038/ngeo162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., and G. S. Bhat, 2016: Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics. J. Appl. Meteor. Climatol., 55, 12771286, https://doi.org/10.1175/JAMC-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 27772796, https://doi.org/10.1175/2008JAMC1787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, https://doi.org/10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., M. E. Splitt, J. Brownlee, N. Spiva, and N. Liu, 2015: A thermodynamic, kinematic and microphysical analysis of a jet and gigantic jet-producing Florida thunderstorm. J. Geophys. Res. Atmos., 120, 84698490, https://doi.org/10.1002/2015JD023383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and M. J. Bunkers, 2005: Observations of a severe, left-moving supercell on 4 May 2003. Wea. Forecasting, 20, 1522, https://doi.org/10.1175/WAF-830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., N. Spiva, J. R. Dwyer, H. K. Rassoul, D. Free, and S. A. Cummer, 2015: Upward electrical discharges observed above Tropical Depression Dorian. Nat. Commun., 6, 5995, https://doi.org/10.1038/ncomms6995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luderer, G., J. Trentmann, K. Hungershofer, M. Herzog, and M. Fromm, and M. O. Andreae, 2007: Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyrocumulonimbus storms. Atmos. Chem. Phys., 7, 59455957, https://doi.org/10.5194/acp-7-5945-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, T. C., T. J. Lang, S. A. Rutledge, W. A. Lyons, S. A. Cummer, G. Lu, and D. T. Lindsey, 2013: Radar and lightning analyses of gigantic-jet-producing storms. J. Geophys. Res. Atmos., 118, 28722888, https://doi.org/10.1002/jgrd.50302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284, https://doi.org/10.1175/2009JAS3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, https://doi.org/10.1175/JAS-D-11-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Duran, and D. Vollaro, 2014: Low Richardson number in the tropical cyclone outflow layer. J. Atmos. Sci., 71, 31643179, https://doi.org/10.1175/JAS-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 11511159, https://doi.org/10.1175/1520-0477-63.10.1151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood, 2002: Electrical discharge from a thundercloud top to the lower ionosphere. Nature, 416, 152154, https://doi.org/10.1038/416152a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 1993: Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J. Geophys. Res., 98, 86118638, https://doi.org/10.1029/92JD01679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57, 36893702, https://doi.org/10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riousset, J. A., V. P. Pasko, P. R. Krehbiel, W. Rison, and M. A. Stanley, 2010: Modeling of thundercloud screening charges: Implications for blue and gigantic jets. J. Geophys. Res., 115, A00E10, https://doi.org/10.1029/2009JA014286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, https://doi.org/10.1002/jgrd.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and R. M. Rabin, 2003: MODIS observations of deep convective cloud tops. Proc. 2003 EUMETSAT Meteorological Satellite Conf., Weimar, Germany, EUMETSAT, 381–388.

  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soula, S., O. van der Velde, J. Montanya, P. Huet, C. Barthe, and J. Bór, 2011: Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J. Geophys. Res., 116, D19103, https://doi.org/10.1029/2010JD015581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Splitt, M. E., and S. M. Lazarus, 2017: Gigantic jet environments: A meteorological evaluation using reanalysis data sets. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract AE23A-2474.

  • Su, H. T., and Coauthors, 2003: Gigantic jets between a thundercloud and the ionosphere. Nature, 423, 974976, https://doi.org/10.1038/nature01759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sueki, K., and H. Niino, 2016: Toward better assessment of tornado potential in typhoons: Significance of considering entrainment effects for CAPE. Geophys. Res. Lett., 43, 12 59712 604, https://doi.org/10.1002/2016GL070349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., 2014: Characteristics of atmospheric gravity waves observed using the MU (middle and upper atmosphere) radar and GPS (global positioning system) radio occultation. Proc. Japan Acad., 90B, 1227, https://doi.org/10.2183/pjab.90.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Velde, O. A., W. A. Lyons, T. E. Nelson, S. A. Cummer, J. Li, and J. Bunnell, 2007: Analysis of the first gigantic jet recorded over continental North America. J. Geophys. Res., 112, D20104, https://doi.org/10.1029/2007JD008575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2004: A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett., 31, L18106, https://doi.org/10.1029/2004GL020787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, https://doi.org/10.1016/j.atmosres.2005.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., S.-H. Su, M. Setvak, H. Lin, and R. M. Rabin, 2010: Ship wave signature at the cloud top of deep convective storms. Atmos. Res., 97, 294302, https://doi.org/10.1016/j.atmosres.2010.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., E. G. Pavelin, R. Busen, J. Hacker, and S. Vosper, 2003: Airborne measurements of gravity wave breaking at the tropopause. Geophys. Res. Lett., 30, 2070, https://doi.org/10.1029/2003GL018207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. W. Burgess, A. Seimon, J. T. Allen, J. C. Snyder, and H. B. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science. WMO Bull., 6, 134138.

  • Zelinsky, D. A., 2019: Tropical Depression Three (AL032019): 22–23 July. National Hurricane Center Tropical Cyclone Rep., 8 pp.

All Time Past Year Past 30 Days
Abstract Views 230 230 24
Full Text Views 74 74 7
PDF Downloads 94 94 8

Distinguishing Characteristics of the Tropical Cyclone Gigantic Jet Environment

View More View Less
  • 1 a Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida
  • | 2 b School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 c College of Aeronautics, Florida Institute of Technology, Melbourne, Florida
  • | 4 d Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The meteorological characteristics associated with thunderstorm-top turbulence and tropical cyclone (TC) gigantic jets (GJs) are investigated. Using reanalysis data and observations, the large-scale environment and storm-top structure of three GJ-producing TCs are compared to three non-GJ oceanic thunderstorms observed via low-light camera. Evidence of gravity wave (GW) breaking is manifest in the IR satellite images with cold ring and enhanced-V signatures prevalent in TCs Hilda and Harvey and embedded warm spots in the Dorian and null storms. Statistics from an additional six less prodigious GJ environments are also included as a baseline. Distinguishing features of the TC GJ environment include higher tropopause, colder brightness temperatures, more stable lower stratosphere/distinct tropopause, and reduced tropopause penetration. These factors support enhanced GW breaking near the cloud top (overshoot). The advantage of a higher tropopause is that both electrical conductivity and GW breaking increase with altitude and thus act in tandem to promote charge dilution by increasing the rate at which the screening layer forms as well as enhancing the storm-top mixing. The roles of the upper-level ambient flow and shear are less certain. Environments with significant upper-tropospheric shear may compensate for a lower tropopause by reducing the height of the critical layer which would also promote more intense GW breaking and turbulence near the cloud top.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven M. Lazarus, slazarus@fit.edu

Abstract

The meteorological characteristics associated with thunderstorm-top turbulence and tropical cyclone (TC) gigantic jets (GJs) are investigated. Using reanalysis data and observations, the large-scale environment and storm-top structure of three GJ-producing TCs are compared to three non-GJ oceanic thunderstorms observed via low-light camera. Evidence of gravity wave (GW) breaking is manifest in the IR satellite images with cold ring and enhanced-V signatures prevalent in TCs Hilda and Harvey and embedded warm spots in the Dorian and null storms. Statistics from an additional six less prodigious GJ environments are also included as a baseline. Distinguishing features of the TC GJ environment include higher tropopause, colder brightness temperatures, more stable lower stratosphere/distinct tropopause, and reduced tropopause penetration. These factors support enhanced GW breaking near the cloud top (overshoot). The advantage of a higher tropopause is that both electrical conductivity and GW breaking increase with altitude and thus act in tandem to promote charge dilution by increasing the rate at which the screening layer forms as well as enhancing the storm-top mixing. The roles of the upper-level ambient flow and shear are less certain. Environments with significant upper-tropospheric shear may compensate for a lower tropopause by reducing the height of the critical layer which would also promote more intense GW breaking and turbulence near the cloud top.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steven M. Lazarus, slazarus@fit.edu

Supplementary Materials

    • Supplemental Materials (ZIP 161.46 MB)
Save