Impact of Entrainment Mixing and Turbulent Fluctuations on Droplet Size Distributions in a Cumulus Cloud: An Investigation Using Lagrangian Microphysics with a Subgrid-Scale Model

Kamal Kant Chandrakar aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kamal Kant Chandrakar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2970-3458
,
Wojciech W. Grabowski aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
, and
George H. Bryan aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Entrainment mixing and turbulent fluctuations critically impact cloud droplet size distributions (DSDs) in cumulus clouds. This problem is investigated via a new sophisticated modeling framework using the Cloud Model 1 (CM1) LES model and a Lagrangian cloud microphysics scheme—the “superdroplet method” (SDM)—coupled with subgrid-scale (SGS) schemes for particle transport and supersaturation fluctuations. This modeling framework is used to simulate a cumulus congestus cloud. Average DSDs in different cloud regions show broadening from entrainment and secondary cloud droplet activation (activation above the cloud base). DSD width increases with increasing entrainment-induced dilution as expected from past work, except in the most diluted cloud regions. The new modeling framework with SGS transport and supersaturation fluctuations allows a more sophisticated treatment of secondary activation compared to previous studies. In these simulations, it contributes about 25% of the cloud droplet population and impacts DSDs in two contrasting ways: narrowing in extremely diluted regions and broadening in relatively less diluted. SGS supersaturation fluctuations contribute significantly to an increase in DSD width via condensation growth and evaporation. Mixing of superdroplets from SGS velocity fluctuations also broadens DSDs. The relative dispersion (ratio of DSD dispersion and mean radius) negatively correlates with gridscale vertical velocity in updrafts but is positively correlated in downdrafts. The latter is from droplet activation driven by positive SGS supersaturation fluctuations in grid-mean subsaturated conditions. Finally, the sensitivity to model grid length is evaluated. The SGS schemes have greater influence as the grid length is increased, and they partially compensate for the reduced model resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu

Abstract

Entrainment mixing and turbulent fluctuations critically impact cloud droplet size distributions (DSDs) in cumulus clouds. This problem is investigated via a new sophisticated modeling framework using the Cloud Model 1 (CM1) LES model and a Lagrangian cloud microphysics scheme—the “superdroplet method” (SDM)—coupled with subgrid-scale (SGS) schemes for particle transport and supersaturation fluctuations. This modeling framework is used to simulate a cumulus congestus cloud. Average DSDs in different cloud regions show broadening from entrainment and secondary cloud droplet activation (activation above the cloud base). DSD width increases with increasing entrainment-induced dilution as expected from past work, except in the most diluted cloud regions. The new modeling framework with SGS transport and supersaturation fluctuations allows a more sophisticated treatment of secondary activation compared to previous studies. In these simulations, it contributes about 25% of the cloud droplet population and impacts DSDs in two contrasting ways: narrowing in extremely diluted regions and broadening in relatively less diluted. SGS supersaturation fluctuations contribute significantly to an increase in DSD width via condensation growth and evaporation. Mixing of superdroplets from SGS velocity fluctuations also broadens DSDs. The relative dispersion (ratio of DSD dispersion and mean radius) negatively correlates with gridscale vertical velocity in updrafts but is positively correlated in downdrafts. The latter is from droplet activation driven by positive SGS supersaturation fluctuations in grid-mean subsaturated conditions. Finally, the sensitivity to model grid length is evaluated. The SGS schemes have greater influence as the grid length is increased, and they partially compensate for the reduced model resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu
Save
  • Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., J. M. Reisner, B. Henson, M. K. Dubey, and C. A. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., A. Jaruga, H. Pawlowska, and W. W. Grabowski, 2015: libcloudph++ 1.0: A single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++. Geosci. Model Dev., 8, 16771707, https://doi.org/10.5194/gmd-8-1677-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, https://doi.org/10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M., R. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, https://doi.org/10.1002/qj.49710644914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641, https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136, https://doi.org/10.1175/1520-0469(1993)050<0120:CEACDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., F. Burnet, and O. Geoffroy, 2011: Cloud optical thickness and liquid water path—Does the k coefficient vary with droplet concentration? Atmos. Chem. Phys., 11, 97719786, https://doi.org/10.5194/acp-11-9771-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 142243–142248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, and R. A. Shaw, 2018: Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects. J. Atmos. Sci., 75, 31913209, https://doi.org/10.1175/JAS-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, S. Krueger, R. A. Shaw, and S. Wunsch, 2020: Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: A two-scalar transport problem. J. Fluid Mech., 884, A19, https://doi.org/10.1017/jfm.2019.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: On modelling nucleation and condensation theory in Eulerian spatial domain. J. Atmos. Sci., 31, 20992117, https://doi.org/10.1175/1520-0469(1974)031<2099:OMNACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, https://doi.org/10.1175/JAS-D-12-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, N., K. K. Chandrakar, K. Chang, W. Cantrell, and R. A. Shaw, 2018: Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud. J. Atmos. Sci., 75, 189201, https://doi.org/10.1175/JAS-D-17-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, https://doi.org/10.1002/qj.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fede, P., and O. Simonin, 2006: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids, 18, 045103, https://doi.org/10.1063/1.2189288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., and Coauthors, 1985: Handbook of Stochastic Methods. Vol. 3. Springer 442 pp.

  • Grabowski, W. W., 2020: Comparison of Eulerian bin and Lagrangian particle-based microphysics in simulations of nonprecipitating cumulus. J. Atmos. Sci., 77, 39513970, https://doi.org/10.1175/JAS-D-20-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández Pardo, L., H. Morrison, L. A. Machado, J. Y. Harrington, and Z. J. Lebo, 2020: Drop size distribution broadening mechanisms in a bin microphysics Eulerian model. J. Atmos. Sci., 77, 32493273, https://doi.org/10.1175/JAS-D-20-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., 2016: The effect of spurious cloud edge supersaturations in Lagrangian cloud models: An analytical and numerical study. Mon. Wea. Rev., 144, 107118, https://doi.org/10.1175/MWR-D-15-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., S. Raasch, and Y. Noh, 2015: Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach. Atmos. Res., 156, 4357, https://doi.org/10.1016/j.atmosres.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., Y. Noh, and S. Raasch, 2017: The route to raindrop formation in a shallow cumulus cloud simulated by a Lagrangian cloud model. J. Atmos. Sci., 74, 21252142, https://doi.org/10.1175/JAS-D-16-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., T. Yamaguchi, and G. Feingold, 2019: Inhomogeneous mixing in Lagrangian cloud models: Effects on the production of precipitation embryos. J. Atmos. Sci., 76, 113133, https://doi.org/10.1175/JAS-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerstein, A. R., 1988: A linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol., 60, 391421, https://doi.org/10.1080/00102208808923995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634, https://doi.org/10.1175/1520-0469(1995)052<3620:TIOSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B., J. Schumacher, and R. A. Shaw, 2013: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361376, https://doi.org/10.1007/s00162-012-0272-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297306, https://doi.org/10.1002/qj.49710343607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, https://doi.org/10.1175/2009JAS3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann, 2012: Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects. Geophys. Res. Lett., 39, L21808, https://doi.org/10.1029/2012GL053599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M., 1979: On the broadening of a droplet distribution by turbulence near cloud base. Quart. J. Roy. Meteor. Soc., 105, 899914, https://doi.org/10.1002/qj.49710544613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G., D. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, https://doi.org/10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., and A. Seifert, 2016: Recirculation and growth of raindrops in simulated shallow cumulus. J. Adv. Model. Earth Syst., 8, 520537, https://doi.org/10.1002/2016MS000631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, https://doi.org/10.1175/2008JAS2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533, https://doi.org/10.1256/003590002321042072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontikis, C., and E. Hicks, 1992: Contribution to the cloud droplet effective radius parameterization. Geophys. Res. Lett., 19, 22272230, https://doi.org/10.1029/92GL02283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2001: Turbulent Flows. Cambridge University Press, 125 pp.

  • Prabhakaran, P., A. S. M. Shawon, G. Kinney, S. Thomas, W. Cantrell, and R. A. Shaw, 2020: The role of turbulent fluctuations in aerosol activation and cloud formation. Proc. Natl. Acad. Sci. USA, 117, 162831–162838, https://doi.org/10.1073/pnas.2006426117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardina, G., S. Poulain, L. Brandt, and R. Caballero, 2018: Broadening of cloud droplet size spectra by stochastic condensation: Effects of mean updraft velocity and CCN activation. J. Atmos. Sci., 75, 451467, https://doi.org/10.1175/JAS-D-17-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S.-I. Shima, and H. Tomita, 2018: Numerical convergence of shallow convection cloud field simulations: Comparison between double-moment Eulerian and particle-based Lagrangian microphysics coupled to the same dynamical core. J. Adv. Model. Earth Syst., 10, 14951512, https://doi.org/10.1029/2018MS001285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeissner, T., R. Shaw, J. Ditas, F. Stratmann, M. Wendisch, and H. Siebert, 2015: Turbulent mixing in shallow trade wind cumuli: Dependence on cloud life cycle. J. Atmos. Sci., 72, 14471465, https://doi.org/10.1175/JAS-D-14-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky, A. Khain, and C. Erlick, 2003: Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmos. Res., 66, 4364, https://doi.org/10.1016/S0169-8095(02)00172-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227, https://doi.org/10.1146/annurev.fluid.35.101101.161125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., and W. W. Grabowski, 2020: Isolated cumulus congestus based on SCMS campaign: Comparison between Eulerian bin and Lagrangian particle-based microphysics. 10th Int. Cloud Modeling Workshop, Pune, India, IITM, https://iccp2020.tropmet.res.in/Cloud-Modeling-Workshop-2020.

    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., Y. Sato, A. Hashimoto, and R. Misumi, 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: Development and evaluation of scale-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2. Geosci. Model Dev., 13, 41074157, https://doi.org/10.5194/gmd-13-4107-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., and R. A. Shaw, 2017: Supersaturation fluctuations during the early stage of cumulus formation. J. Atmos. Sci., 74, 975988, https://doi.org/10.1175/JAS-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and H. Morrison, 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444462, https://doi.org/10.1175/JAS-D-11-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158, https://doi.org/10.1016/S0169-8095(98)00039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telford, J. W., T. S. Keck, and S. K. Chai, 1984: Entrainment at cloud tops and the droplet spectra. J. Atmos. Sci., 41, 31703179, https://doi.org/10.1175/1520-0469(1984)041<3170:EACTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556, https://doi.org/10.1017/S0022112087001940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tölle, M. H., and S. K. Krueger, 2014: Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds. J. Adv. Model. Earth Syst., 6, 281299, https://doi.org/10.1002/2012MS000209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969: The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059, https://doi.org/10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, J. C., P. P. Sullivan, and C.-H. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci., 61, 28772887, https://doi.org/10.1175/JAS-3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., S. Irons, and P. Jonas, 2002: How important is the spectral ripening effect in stratiform boundary layer clouds? Studies using simple trajectory analysis. J. Atmos. Sci., 59, 26812693, https://doi.org/10.1175/1520-0469(2002)059<2681:HIITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., P. Kollias, R. A. Shaw, and A. M. Vogelmann, 2018: Cloud droplet size distribution broadening during diffusional growth: Ripening amplified by deactivation and reactivation. Atmos. Chem. Phys., 18, 73137328, https://doi.org/10.5194/acp-18-7313-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 463 0 0
Full Text Views 3217 2188 587
PDF Downloads 1590 532 45