The Role of a Tropopause Polar Vortex in the Generation of the January 2019 Extreme Arctic Outbreak

Samuel P. Lillo aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Samuel P. Lillo in
Current site
Google Scholar
PubMed
Close
,
Steven M. Cavallo aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Steven M. Cavallo in
Current site
Google Scholar
PubMed
Close
,
David B. Parsons aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
, and
Christopher Riedel aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Christopher Riedel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An extreme Arctic cold air outbreak took place across the Midwest, Great Lakes, and Northeast during 29 January to 1 February 2019. The event broke numerous long-standing records with wide-reaching and detrimental societal impacts. This study found that this rare and dangerous cold air outbreak (CAO) was a direct consequence of a tropopause polar vortex (TPV) originating at high latitudes and subsequently tracking southward into the United States. The tropopause depression at the center of this TPV extended nearly to the surface. Simulations using the atmospheric component of the Model for Prediction Across Scales (MPAS) were conducted, revealing excellent predictability at 6–7-day lead times with the strength, timing, and location of the CAO linked to the earlier characteristics of the TPV over the Arctic. Within the middle latitudes, the TPV subsequently developed a tilt with height. Warming and the destruction of potential vorticity also took place as the TPV passed over the Great Lakes initiating a lake-effect snow storm. The climatological investigation of CAOs suggests that TPVs frequently play a role in CAOs over North America with a TPV located within 1000 km of a CAO 85% of the time. These TPVs tended to originate in the northern Canadian Arctic and are ejected equatorward into the Great Lakes/Upper Midwest and then to the Northeast over Labrador. This study also provides insight into how the impact of Arctic circulations on middle latitudes may vary within the framework of a rapidly changing Arctic.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David B. Parsons, dparsons@ou.edu

Abstract

An extreme Arctic cold air outbreak took place across the Midwest, Great Lakes, and Northeast during 29 January to 1 February 2019. The event broke numerous long-standing records with wide-reaching and detrimental societal impacts. This study found that this rare and dangerous cold air outbreak (CAO) was a direct consequence of a tropopause polar vortex (TPV) originating at high latitudes and subsequently tracking southward into the United States. The tropopause depression at the center of this TPV extended nearly to the surface. Simulations using the atmospheric component of the Model for Prediction Across Scales (MPAS) were conducted, revealing excellent predictability at 6–7-day lead times with the strength, timing, and location of the CAO linked to the earlier characteristics of the TPV over the Arctic. Within the middle latitudes, the TPV subsequently developed a tilt with height. Warming and the destruction of potential vorticity also took place as the TPV passed over the Great Lakes initiating a lake-effect snow storm. The climatological investigation of CAOs suggests that TPVs frequently play a role in CAOs over North America with a TPV located within 1000 km of a CAO 85% of the time. These TPVs tended to originate in the northern Canadian Arctic and are ejected equatorward into the Great Lakes/Upper Midwest and then to the Northeast over Labrador. This study also provides insight into how the impact of Arctic circulations on middle latitudes may vary within the framework of a rapidly changing Arctic.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David B. Parsons, dparsons@ou.edu
Save
  • Agee, E. M., and S. R. Gilbert, 1989: An aircraft investigation of mesoscale convection over Lake Michigan during the 10 January 1984 cold air outbreak. J. Atmos. Sci., 46, 18771897, https://doi.org/10.1175/1520-0469(1989)046<1877:AAIOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biernat, K., L. Bosart, and D. Keyser, 2021: A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States. Mon. Wea. Rev., 149, 189206, https://doi.org/10.1175/MWR-D-20-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., and L. F. Bosart, 1983: A cyclone/anticyclone couplet over North America: An example of anticyclone evolution. Mon. Wea. Rev., 111, 10251045, https://doi.org/10.1175/1520-0493(1983)111<1025:ACCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., A. Thorpe, A. Montani, D. Parsons, M. Griffiths, P. Panagi, and E. Dicks, 2000: Interactions of tropopause depressions with an ex–tropical cyclone and sensitivity of forecasts to analysis errors. Mon. Wea. Rev., 128, 27342755, https://doi.org/10.1175/1520-0493(2000)128<2734:IOTDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., 2009: The structure and maintenance of tropopause polar vortices over the Arctic. Ph.D. thesis, University of Washington, 148 pp.

  • Cavallo, S. M., and G. J. Hakim, 2005: Life cycles of tropopause polar vortices. 15th Conf. on Atmospheric and Oceanic Fluid Dynamics, Cambridge, MA, Amer. Meteor. Soc., JP2.1, https://ams.confex.com/ams/Cambridge/webprogram/Paper92780.html.

  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 13581371, https://doi.org/10.1175/2008MWR2670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010a: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010b: The composite structure of tropopause polar cyclones from a mesoscale model. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2012: Radiative impact on tropopause polar vortices over the Arctic. Mon. Wea. Rev., 140, 16831702, https://doi.org/10.1175/MWR-D-11-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2013: Physical mechanisms of tropopause polar vortex intensity change. J. Atmos. Sci., 70, 33593373, https://doi.org/10.1175/JAS-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, https://doi.org/10.1029/2005JD006273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and J. C. Davenport, 1987: Rapid surface anticyclogenesis: Synoptic climatology and attendant large-scale circulation changes. Mon. Wea. Rev., 115, 822836, https://doi.org/10.1175/1520-0493(1987)115<0822:RSASCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J., 1987: The contribution of radiative cooling to the formation of cold-core anticyclones. J. Atmos. Sci., 44, 25752592, https://doi.org/10.1175/1520-0469(1987)044<2575:TCORCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J., J. L. Schramm, W. B. Rossow, and D. Randall, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downton, M. W., and K. A. Miller, 1993: The freeze risk to Florida citrus. Part II: Temperature variability and circulation patterns. J. Climate, 6, 364372, https://doi.org/10.1175/1520-0442(1993)006<0364:TFRTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gajanan, M., 2019: 21 people died of the cold during the polar vortex. Time, 1 February, http://time.com/5518469/21-people-died-cold-polar-vortex/.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., https://doi.org/10.5065/D60Z716B.

    • Crossref
    • Export Citation
  • Hakim, G. J., 2000: Climatology of coherent structures on the extratropical tropopause. Mon. Wea. Rev., 128, 385406, https://doi.org/10.1175/1520-0493(2000)128<0385:COCSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and A. K. Canavan, 2005: Observed cyclone–anticyclone tropopause vortex asymmetries. J. Atmos. Sci., 62, 231240, https://doi.org/10.1175/JAS-3353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, https://doi.org/10.1175/MWR-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1996: Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon. Wea. Rev., 124, 10671083, https://doi.org/10.1175/1520-0493(1996)124<1067:RBTIOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1998: Persistent planetary scale circulation patterns and their relationship with cold air outbreak activity over the eastern United States. Int. J. Climatol., 18, 12091221, https://doi.org/10.1002/(SICI)1097-0088(199809)18:11<1209::AID-JOC301>3.0.CO;2-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, https://doi.org/10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, F. J., 1951: The Kolmogorov-Smirnov test for goodness of fit. J. Amer. Stat. Assoc., 46, 6878, https://doi.org/10.1080/01621459.1951.10500769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, K. A., and M. W. Downton, 1993: The freeze risk to Florida citrus. Part 1: Investment decisions. J. Climate, 6, 354363, https://doi.org/10.1175/1520-0442(1993)006<0354:TFRTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579, https://doi.org/10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myrick, D., 2017: Global Forecast Systems (GFS) upgrade: Effective July 19, 2017. National Weather Service Change Notice 17-67, 10 pp.

  • Nielsen-Gammon, J. W., and D. A. Gold, 2008: Potential vorticity diagnosis of the severe convective regime. Part II: The impact of idealized PV anomalies. Mon. Wea. Rev., 136, 15821592, https://doi.org/10.1175/2007MWR2091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2019: January 30-31, 2019: Record to near-record cold in northern Illinois. National Weather Service, https://www.weather.gov/lot/RecordColdJan2019.

  • Palmer, C. E., 1959: The stratospheric polar vortex in winter. J. Geophys. Res., 64, 749764, https://doi.org/10.1029/JZ064i007p00749.

  • Papritz, L., E. Rouges, F. Aemisegger, and H. Wernli, 2019: On the thermodynamic preconditioning of Arctic air masses and the role of tropopause polar vortices for cold air outbreaks from Fram Strait. J. Geophys. Res. Atmos., 124, 11 03311 050, https://doi.org/10.1029/2019JD030570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1998: Geophysical Fluid Dynamics. 2nd ed. Springer, 728 pp.

  • Provenzale, A., 1999: Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech., 31, 5593, https://doi.org/10.1146/annurev.fluid.31.1.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132, 297319, https://doi.org/10.1175/1520-0493(2004)132<0297:ADSOJS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and R. V. Rohli, 1991: Florida citrus freezes and polar anticyclones in the Great Plains. J. Climate, 4, 11031113, https://doi.org/10.1175/1520-0442(1991)004<1103:FCFAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M., T. Hampel, and A. Krueger, 1987: The Arctic tropopause fold. Mon. Wea. Rev., 115, 444454, https://doi.org/10.1175/1520-0493(1987)115<0444:TATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A., R. R. Draxler, G. D. Rolph, B. J. Stunder, M. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szapiro, N., and S. Cavallo, 2018: TPVTrack v1. 0: A watershed segmentation and overlap correspondence method for tracking tropopause polar vortices. Geosci. Model Dev., 11, 51735187, https://doi.org/10.5194/gmd-11-5173-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci., 42, 397–406, https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2.

    • Crossref
    • Export Citation
  • Thorpe, A. J., 1986: Synoptic scale disturbances with circular symmetry. Mon. Wea. Rev., 114, 1384–1389, https://doi.org/10.1175/1520-0493(1986)114<1384:SSDWCS>2.0.CO;2.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., J. Walsh, W. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 1133–1147, https://doi.org/10.1002/joc.1301.

    • Crossref
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., J. W. Nielsen-Gammon, and D. Keyser, 2000: A potential vorticity diagnostic approach to upper-level frontogenesis within a developing baroclinic wave. J. Atmos. Sci., 57, 39183938, https://doi.org/10.1175/1520-0469(2001)058<3918:APVDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. H. Sobel, and L. M. Polvani, 2017: What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc., 98, 3744, https://doi.org/10.1175/BAMS-D-15-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, D., V. Harvey, D. Atkinson, R. Collins, and M. Mills, 2011: A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. J. Geophys. Res., 116, D12107, https://doi.org/10.1029/2011JD015711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., and J. E. Martin, 2017: Diagnosis of a North American polar–subtropical jet superposition employing piecewise potential vorticity inversion. Mon. Wea. Rev., 145, 18531873, https://doi.org/10.1175/MWR-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., D. Keyser, L. F. Bosart, and J. E. Martin, 2020: Composite synoptic-scale environments conducive to North American polar–subtropical jet superposition events. Mon. Wea. Rev., 148, 19872008, https://doi.org/10.1175/MWR-D-19-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 644 0 0
Full Text Views 1490 485 113
PDF Downloads 1335 365 21