Influence of Latitude and Moisture Effects on the Barotropic Instability of an Idealized ITCZ

Eric Bembenek aDepartment of Atmospheric and Oceanics Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eric Bembenek in
Current site
Google Scholar
PubMed
Close
,
Timothy M. Merlis aDepartment of Atmospheric and Oceanics Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
, and
David N. Straub aDepartment of Atmospheric and Oceanics Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by David N. Straub in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large fraction of tropical cyclones (TCs) are generated near the intertropical convergence zone (ITCZ), and barotropic instability of the related wind shear has been shown to be an important generation mechanism. The latitudinal position of the ITCZ shifts seasonally and may shift poleward in response to global warming. Aquaplanet GCM simulations have shown TC-generation frequency to vary with position of the ITCZ. These results, and that moisture plays an essential role in the dynamics, motivate the present study on the growth rates of barotropic instability in ITCZ-like zonal wind profiles. Base-state zonal wind profiles are generated by applying a prescribed forcing (representing zonally averaged latent heat release in the ITCZ) to a shallow-water model. Shifting the latitudinal position of the forcing alters these profiles, with a poleward shift leading to enhanced barotropic instability. Next, an examination of how latent release impacts the barotropic breakdown of these profiles is considered. To do this, moisture is explicitly represented using a tracer variable. Upon supersaturation, precipitation occurs and the related latent heat release is parameterized as a mass transfer out of the dynamically active layer. Whether moisture serves to enhance or reduce barotropic growth rates is found to depend on how saturation humidity is represented. In particular, taking it to be constant or a function of the layer thickness (related to temperature) leads to a reduction, whereas taking it to be a specified function of latitude leads to an enhancement. Simple arguments are given to support the idea that moisture effects should lead to a reduction in the moist shallow-water model and that a poleward shift of the ITCZ should lead to an enhancement of barotropic instability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Bembenek, eric.bembenek@mail.mcgill.ca

Abstract

A large fraction of tropical cyclones (TCs) are generated near the intertropical convergence zone (ITCZ), and barotropic instability of the related wind shear has been shown to be an important generation mechanism. The latitudinal position of the ITCZ shifts seasonally and may shift poleward in response to global warming. Aquaplanet GCM simulations have shown TC-generation frequency to vary with position of the ITCZ. These results, and that moisture plays an essential role in the dynamics, motivate the present study on the growth rates of barotropic instability in ITCZ-like zonal wind profiles. Base-state zonal wind profiles are generated by applying a prescribed forcing (representing zonally averaged latent heat release in the ITCZ) to a shallow-water model. Shifting the latitudinal position of the forcing alters these profiles, with a poleward shift leading to enhanced barotropic instability. Next, an examination of how latent release impacts the barotropic breakdown of these profiles is considered. To do this, moisture is explicitly represented using a tracer variable. Upon supersaturation, precipitation occurs and the related latent heat release is parameterized as a mass transfer out of the dynamically active layer. Whether moisture serves to enhance or reduce barotropic growth rates is found to depend on how saturation humidity is represented. In particular, taking it to be constant or a function of the layer thickness (related to temperature) leads to a reduction, whereas taking it to be a specified function of latitude leads to an enhancement. Simple arguments are given to support the idea that moisture effects should lead to a reduction in the moist shallow-water model and that a poleward shift of the ITCZ should lead to an enhancement of barotropic instability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Bembenek, eric.bembenek@mail.mcgill.ca
Save
  • Adam, O., 2018: Zonally varying ITCZs in a Matsuno-Gill-type model with an idealized Bjerknes feedback. J. Adv. Model. Earth Syst., 10, 13041318, https://doi.org/10.1029/2017MS001183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E. M., 1972: Note on ITCZ wave disturbances and formation of Tropical Storm Anna. Mon. Wea. Rev., 100, 733737, https://doi.org/10.1175/1520-0493(1972)100<0733:NOIWDA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaadi, A., G. Brunet, and M. K. Yau, 2016: On the dynamics of the formation of the Kelvin cat’s-eye in tropical cyclogenesis. Part II: Numerical simulation. J. Atmos. Sci., 73, 23392359, https://doi.org/10.1175/JAS-D-15-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballinger, A. P., T. M. Merlis, I. M. Held, and M. Zhao, 2015: The sensitivity of tropical cyclone activity to off-equatorial thermal forcing in aquaplanet simulations. J. Atmos. Sci., 72, 22862302, https://doi.org/10.1175/JAS-D-14-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bembenek, E., D. N. Straub, and T. M. Merlis, 2020: Effects of moisture in a two-layer model of the midlatitude jet stream. J. Atmos. Sci., 77, 131147, https://doi.org/10.1175/JAS-D-19-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., and M. J. Reeder, 2013: Objective identification of the intertropical convergence zone: Climatology and trends from the ERA-Interim. J. Climate, 21, 18941909, https://doi.org/10.1175/JCLI-D-13-00339.1.

    • Search Google Scholar
    • Export Citation
  • Bouchut, F., J. Lambaerts, G. Lapeyre, and V. Zeitlin, 2009: Fronts and nonlinear waves in a simplified shallow-water model of the atmosphere with moisture and convection. Phys. Fluids, 21, 116604, https://doi.org/10.1063/1.3265970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., P. Huang, G. H. Chen, and W. Chen, 2012: Modulation of western North Pacific tropical cyclone genesis by intraseasonal oscillation of the ITCZ: A statistical analysis. Adv. Atmos. Sci., 29, 744754, https://doi.org/10.1007/s00376-012-1121-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Reed, 2019: Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size. J. Atmos. Sci., 76, 22572274, https://doi.org/10.1175/JAS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2019: Barotropic growth of monsoon depressions. Quart. J. Roy. Meteor. Soc., 145, 824844, https://doi.org/10.1002/qj.3467.

  • Dritschel, D., 1989: On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech., 206, 193221, https://doi.org/10.1017/S0022112089002284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Studies of moisture effects in simple atmospheric models: The stable case. Geophys. Astrophys. Fluid Dyn., 19, 119152, https://doi.org/10.1080/03091928208208950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, T.-L., G. A. Vecchi, W. Yang, I. M. Held, and S. T. Garner, 2020: Large-scale control on the frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global atmospheric models. Climate Dyn., 55, 31773196, https://doi.org/10.1007/s00382-020-05446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, H. J., 1989: A reexamination of the genesis of African waves. J. Atmos. Sci., 46, 36213631, https://doi.org/10.1175/1520-0469(1989)046<3621:AROTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, and V. Zeitlin, 2011: Moist versus dry barotropic instability in a shallow-water model of the atmosphere with moist convection. J. Atmos. Sci., 68, 12341252, https://doi.org/10.1175/2011JAS3540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710, https://doi.org/10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, https://doi.org/10.1073/pnas.1508268112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., M. Zhao, and I. M. Held, 2013: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophys. Res. Lett., 40, 41094114, https://doi.org/10.1002/grl.50680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M., M. Nicholls, T. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285, https://doi.org/10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, https://doi.org/10.1007/s10712-011-9159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, https://doi.org/10.1175/JAS-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, D. L., and J. Sukhatme, 2020: Moist shallow-water response to tropical forcing: Initial-value problems. Quart. J. Roy. Meteor. Soc., 146, 36953714, https://doi.org/10.1002/qj.3867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, D. L., J. Sukhatme, and J. M. Monteiro, 2017: Tropical vorticity forcing and superrotation in the spherical shallow-water equations. Quart. J. Roy. Meteor. Soc., 143, 957965, https://doi.org/10.1002/qj.2979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., 2014: Low-frequency modes in an equatorial shallow-water model with moisture gradients. Quart. J. Roy. Meteor. Soc., 140, 18381846, https://doi.org/10.1002/qj.2264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, https://doi.org/10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and J. Penn, 2020: Convective organization and eastward propagating equatorial disturbances in a simple excitable system. Quart. J. Roy. Meteor. Soc., 146, 22972314, https://doi.org/10.1002/qj.3792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2005: ITCZ breakdown in three-dimensional flows. J. Atmos. Sci., 62, 14971512, https://doi.org/10.1175/JAS3409.1.

  • Wang, C.-C., and G. Magnusdottir, 2006: The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Wea. Rev., 134, 14051421, https://doi.org/10.1175/MWR3130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci., 73, 26332642, https://doi.org/10.1175/JAS-D-15-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wodzicki, K. R., and A. D. Rapp, 2016: Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. Atmos., 121, 31533170, https://doi.org/10.1002/2015JD024458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokota, S., H. Niino, and W. Yanase, 2012: Tropical cyclogenesis due to breakdown of intertropical convergence zone: An idealized numerical experiment. SOLA, 8, 103106, https://doi.org/10.2151/sola.2012-026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokota, S., H. Niino, and W. Yanase, 2015: Tropical cyclogenesis due to breakdown of ITCZ: Idealized numerical experiments and a case study of the event in July 1988. J. Atmos. Sci., 72, 36633684, https://doi.org/10.1175/JAS-D-14-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 430 0 0
Full Text Views 861 320 74
PDF Downloads 513 115 3