• Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: Interpolation of LES cloud surfaces for use in direct calculations of entrainment and detrainment. Mon. Wea. Rev., 139, 444456, https://doi.org/10.1175/2010MWR3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, S., and Coauthors, 2015: RACORO continental boundary layer cloud investigations: 2. Large-eddy simulations of cumulus clouds and evaluation with in situ and ground-based observations. J. Geophys. Res. Atmos., 120, 59936014, https://doi.org/10.1002/2014JD022525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, S., and Coauthors, 2019: Reconciling differences between large-eddy simulations and Doppler-lidar observations of continental shallow cumulus cloud-base vertical velocity. Geophys. Res. Lett., 46, 11 53911 547, https://doi.org/10.1029/2019GL084893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griewank, P. J., T. Heus, N. P. Lareau, and R. A. J. Neggers, 2020: Size dependence in chord characteristics from simulated and observed continental shallow cumulus. Atmos. Chem. Phys., 20, 10 21110 230, https://doi.org/10.5194/acp-20-10211-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., M. K. Yau, and R. Davies, 1997: The effects of longwave radiation in a small cumulus cloud. J. Atmos. Sci., 54, 22012214, https://doi.org/10.1175/1520-0469(1997)054<2201:TEOLRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., and Coauthors, 2020: The Large-eddy simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation (LASSO) activity for continental shallow convection. Bull. Amer. Meteor. Soc., 101, E462E479, https://doi.org/10.1175/BAMS-D-19-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, https://doi.org/10.1175/2009JAS3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., Y. Zhang, and S. A. Klein, 2018: Observed boundary layer controls on shallow cumulus at the ARM Southern Great Plains site. J. Atmos. Sci., 75, 22352255, https://doi.org/10.1175/JAS-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, J., 1974: Field verification of the relationship between entrainment rate and cumulus cloud diameter. J. Atmos. Sci., 31, 10281039, https://doi.org/10.1175/1520-0469(1974)031<1028:FVOTRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., and R. Öktem, 2018: Observing clouds in 4D with multiview stereophotogrammetry. Bull. Amer. Meteor. Soc., 99, 25752586, https://doi.org/10.1175/BAMS-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94103, https://doi.org/10.1002/qj.49707933908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53, 23542364, https://doi.org/10.1175/1520-0469(1996)053<2354:MIOEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24, 4956, https://doi.org/10.1175/1520-0450(1985)024<0049:AFWCCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1962: The ‘starting plume’ in neutral surroundings. J. Fluid Mech., 13, 356368, https://doi.org/10.1017/S0022112062000762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system-resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yates, A. H., 1953: Atmospheric convection; the structure of thermals below cloud-base. Quart. J. Roy. Meteor. Soc., 79, 420424, https://doi.org/10.1002/qj.49707934115.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 259 60
Full Text Views 113 113 10
PDF Downloads 124 124 14

On the Life Cycle of a Shallow Cumulus Cloud: Is It a Bubble or Plume, Active or Forced?

View More View Less
  • 1 a Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
  • | 2 b Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 3 c Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A cloud’s life cycle determines how its mass flux translates into cloud cover, thereby setting Earth’s albedo. Here, an attempt is made to quantify the most basic aspects of the life cycle of a shallow cumulus cloud: the degree to which it is a bubble or a plume, and active or forced. Quantitative measures are proposed for these properties, which are then applied to hundreds of shallow cumulus clouds in Oklahoma using data from stereo cameras, a Doppler lidar, and large-eddy simulations. The observed clouds are intermediate between active and forced, but behave more like bubbles than plumes. The simulated clouds, on the other hand, are more active and plumelike, suggesting room for improvement in the modeling of shallow cumulus.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu

Abstract

A cloud’s life cycle determines how its mass flux translates into cloud cover, thereby setting Earth’s albedo. Here, an attempt is made to quantify the most basic aspects of the life cycle of a shallow cumulus cloud: the degree to which it is a bubble or a plume, and active or forced. Quantitative measures are proposed for these properties, which are then applied to hundreds of shallow cumulus clouds in Oklahoma using data from stereo cameras, a Doppler lidar, and large-eddy simulations. The observed clouds are intermediate between active and forced, but behave more like bubbles than plumes. The simulated clouds, on the other hand, are more active and plumelike, suggesting room for improvement in the modeling of shallow cumulus.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu
Save