Role of Surface Latent Heat Flux in Shallow Cloud Transitions: A Mechanism-Denial LES Study

Youtong Zheng aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Youtong Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5961-7617
,
Haipeng Zhang aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Haipeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Zhanqing Li aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Zhanqing Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface latent heat flux (LHF) has been considered as the determinant driver of the stratocumulus-to-cumulus transition (SCT). The distinct signature of the LHF in driving the SCT, however, has not been found in observations. This motivates us to ask, How determinant is the LHF to SCT? To answer this question, we conduct large-eddy simulations in a Lagrangian setup in which the sea surface temperature increases over time to mimic a low-level cold-air advection. To isolate the role of LHF, we conduct a mechanism-denial experiment in which the LHF adjustment is turned off. The simulations confirm the indispensable roles of LHF in sustaining (although not initiating) the boundary layer decoupling (first stage of SCT) and driving the cloud regime transition (second stage of SCT). However, using theoretical arguments and LES results, we show that decoupling can happen without the need for LHF to increase as long as the capping inversion is weak enough to ensure high entrainment efficiency. The high entrainment efficiency alone cannot sustain the decoupled state without the help of LHF adjustment, leading to the recoupling of the boundary layer that eventually becomes cloud-free. Interestingly, the stratocumulus sheet is sustained longer without LHF adjustment. The mechanisms underlying the findings are explained from the perspectives of cloud-layer budgets of energy (first stage) and liquid water path (second stage).

Significance Statement

An important but poorly understood phenomenon about the stratocumulus (low-lying blanket-like clouds) is its tendency to transition to cumulus clouds (cauliflower-like clouds) as the sea surface warms, called the stratocumulus-to-cumulus transition (SCT). We confirmed an existing hypothesis that an increase in the evaporation of seawater [latent heat flux (LHF)] is the key driver of the SCT. However, we found the role of LHF depends on environmental conditions. For example, if the temperature jump above the cloud is weak, the overlying warm air can sink more effectively into the cloud, initiating the boundary layer decoupling, the first phase of SCT. These results advance our understanding of the conditions under which SCT happens, allowing better quantification of its role in climate change.

Zheng’s current affiliation: Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youtong Zheng, zhengyoutong@gmail.com

Abstract

Surface latent heat flux (LHF) has been considered as the determinant driver of the stratocumulus-to-cumulus transition (SCT). The distinct signature of the LHF in driving the SCT, however, has not been found in observations. This motivates us to ask, How determinant is the LHF to SCT? To answer this question, we conduct large-eddy simulations in a Lagrangian setup in which the sea surface temperature increases over time to mimic a low-level cold-air advection. To isolate the role of LHF, we conduct a mechanism-denial experiment in which the LHF adjustment is turned off. The simulations confirm the indispensable roles of LHF in sustaining (although not initiating) the boundary layer decoupling (first stage of SCT) and driving the cloud regime transition (second stage of SCT). However, using theoretical arguments and LES results, we show that decoupling can happen without the need for LHF to increase as long as the capping inversion is weak enough to ensure high entrainment efficiency. The high entrainment efficiency alone cannot sustain the decoupled state without the help of LHF adjustment, leading to the recoupling of the boundary layer that eventually becomes cloud-free. Interestingly, the stratocumulus sheet is sustained longer without LHF adjustment. The mechanisms underlying the findings are explained from the perspectives of cloud-layer budgets of energy (first stage) and liquid water path (second stage).

Significance Statement

An important but poorly understood phenomenon about the stratocumulus (low-lying blanket-like clouds) is its tendency to transition to cumulus clouds (cauliflower-like clouds) as the sea surface warms, called the stratocumulus-to-cumulus transition (SCT). We confirmed an existing hypothesis that an increase in the evaporation of seawater [latent heat flux (LHF)] is the key driver of the SCT. However, we found the role of LHF depends on environmental conditions. For example, if the temperature jump above the cloud is weak, the overlying warm air can sink more effectively into the cloud, initiating the boundary layer decoupling, the first phase of SCT. These results advance our understanding of the conditions under which SCT happens, allowing better quantification of its role in climate change.

Zheng’s current affiliation: Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youtong Zheng, zhengyoutong@gmail.com
Save
  • Abel, S. J., and Coauthors, 2017: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci., 74, 22932314, https://doi.org/10.1175/JAS-D-16-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1997: Convection in stratocumulus-topped atmospheric boundary layers. The Physics and Parameterization of Moist Atmospheric Convection, Springer, 127–142.

  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, https://doi.org/10.1002/2013MS000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, https://doi.org/10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. Uchida, and P. N. Blossey, 2010: Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2 (4), https://doi.org/10.3894/JAMES.2010.2.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, https://doi.org/10.1175/JAS3561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173, https://doi.org/10.1175/1520-0469(1997)054<2157:OLTOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and C. S. Bretherton, 2016: Time scales of clouds and cloud-controlling variables in subtropical stratocumulus from a Lagrangian perspective. J. Atmos. Sci., 73, 30793091, https://doi.org/10.1175/JAS-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Geerts, B., 2019: Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) science implementation plan. ARM Tech. Rep. DOE/SC-ARM-19-002, 38 pp.

  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971-96) and ocean (1954-97) from surface observations worldwide. Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center Rep., 75 pp.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., C. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, https://doi.org/10.5194/acp-11-7143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazemirad, M., and M. A. Miller, 2020: Summertime post-cold-frontal marine stratocumulus transition processes over the eastern North Atlantic. J. Atmos. Sci., 77, 20112037, https://doi.org/10.1175/JAS-D-19-0167.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary-layer circulation. J. Atmos. Sci., 52, 28512868, https://doi.org/10.1175/1520-0469(1995)052<2851:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916, https://doi.org/10.1002/qj.49711448204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D., and W. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci., 55, 26452665, https://doi.org/10.1175/1520-0469(1998)055<2645:LEBLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2018: In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmos. Chem. Phys., 18, 17 19117 206, https://doi.org/10.5194/acp-18-17191-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A., 2009: Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 941952, https://doi.org/10.1002/qj.424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, I. L., R. Wood, and J. K. Fletcher, 2017: Identifying meteorological controls on open and closed mesoscale cellular convection associated with marine cold air outbreaks. J. Geophys. Res. Atmos., 122, 11 67811 702, https://doi.org/10.1002/2017JD027031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162, https://doi.org/10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 66956716, https://doi.org/10.5194/acp-14-6695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R., and Coauthors, 2017: Single-column model simulations of subtropical marine boundary-layer cloud transitions under weakening inversions. J. Adv. Model. Earth Syst., 9, 23852412, https://doi.org/10.1002/2017MS001064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, https://doi.org/10.1002/qj.49711046603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, https://doi.org/10.1002/qj.49711247209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461480, https://doi.org/10.1002/qj.49711247210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., T. Yeh, J. S. Malkus, and N. E. La Seur, 1951: The north-east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77, 598626, https://doi.org/10.1002/qj.49707733405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, https://doi.org/10.1175/2011JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siems, S. T., and C. S. Bretherton, 1992: A numerical investigation of cloud-top entrainment instability and related experiments. Quart. J. Roy. Meteor. Soc., 118, 787818, https://doi.org/10.1002/qj.49711850702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc., 116, 705739, https://doi.org/10.1002/qj.49711649309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, https://doi.org/10.1016/0021-9991(90)90105-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2000: Cloud transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27, 25572560, https://doi.org/10.1029/1999GL011257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, https://doi.org/10.1256/qj.01.202.

  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64, 29162931, https://doi.org/10.1175/JAS3983.1.

  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579594, https://doi.org/10.1175/BAMS-84-5-579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, https://doi.org/10.1175/2011JCLI3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009, https://doi.org/10.1002/qj.49711347712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Dussen, J., and Coauthors, 2013: The GASS/EUCLIPSE model intercomparison of the stratocumulus transition as observed during ASTEX: LES results. J. Adv. Model. Earth Syst., 5, 483499, https://doi.org/10.1002/jame.20033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Dussen, J., S. De Roode, and A. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655664, https://doi.org/10.1175/JAS-D-13-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, H., C.-M. Wu, and C. R. Mechoso, 2011: Buoyancy reversal, decoupling and the transition from stratocumulus to shallow cumulus topped marine boundary layers. Climate Dyn., 37, 971984, https://doi.org/10.1007/s00382-010-0882-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, https://doi.org/10.1175/2007JAS2438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and Z. Li, 2019: Episodes of warm-air advection causing cloud-surface decoupling during the MARCUS. J. Geophys. Res. Atmos., 124, 12 22712 243, https://doi.org/10.1029/2019JD030835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2018: Estimating the decoupling degree of subtropical marine stratocumulus decks from satellite. Geophys. Res. Lett., 45, 12 56012 568, https://doi.org/10.1029/2018GL078382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2020: A more general paradigm for understanding the decoupling of stratocumulus-topped boundary layers: The importance of horizontal temperature advection. Geophys. Res. Lett., 47, e2020GL087697, https://doi.org/10.1029/2020GL087697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., P. Kollias, and E. R. Lewis, 2015: Clouds, precipitation, and marine boundary layer structure during the MAGIC field campaign. J. Climate, 28, 24202442, https://doi.org/10.1175/JCLI-D-14-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 488 0 0
Full Text Views 795 309 61
PDF Downloads 596 154 5