Convective Forcing of the North American Monsoon Anticyclone at Intraseasonal and Interannual Time Scales

Kai-Wei Chang aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Kai-Wei Chang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4674-2662
,
Kenneth P. Bowman aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Kenneth P. Bowman in
Current site
Google Scholar
PubMed
Close
,
Leong Wai Siu bDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Leong Wai Siu in
Current site
Google Scholar
PubMed
Close
, and
Anita D. Rapp aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Anita D. Rapp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the upper troposphere and lower stratosphere (UTLS), large-scale anticyclones associated with monsoons play major roles in tropospheric and stratospheric transport and mixing. To understand the forcing of the North American monsoon anticyclone (NAMA), this study examines the connection between precipitation over the tropics and subtropics of the North American longitude sector and the variability of the troposphere and lower stratosphere. Using ERA5 and outgoing longwave radiation (OLR) data from 1979 to 2019, we assess the relationship at the intraseasonal time scale using pentad-mean time series. We show that OLR anomalies are correlated with circulation anomalies northwest and northeast of the region of precipitation. Decreased OLR (increased precipitation) corresponds to increased geopotential heights and anticyclonic circulation anomalies in the 300–100-hPa layer and an opposite response in the lower-tropospheric 850–600-hPa layer. The results are consistent with the established theory of the Rossby wave response to latent heating. The increase in height, which is strongest near 150 hPa, indicates that increased precipitation is associated with a strengthened NAMA. UTLS temperatures also have significant correlations with OLR, with cold (warm) anomalies occurring above (below) the core of the anticyclonic anomaly consistent with large-scale balance. The vertical structure of geopotential and temperature anomalies is compared to simulations using an idealized general circulation model, which shows that such a vertical structure is a consistent response to diabatic heating. Correlations at the interannual time scale resemble those at the intraseasonal time scale, demonstrating that precipitation is related to the NAMA at both time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai-Wei Chang, kwchang30@tamu.edu

Abstract

In the upper troposphere and lower stratosphere (UTLS), large-scale anticyclones associated with monsoons play major roles in tropospheric and stratospheric transport and mixing. To understand the forcing of the North American monsoon anticyclone (NAMA), this study examines the connection between precipitation over the tropics and subtropics of the North American longitude sector and the variability of the troposphere and lower stratosphere. Using ERA5 and outgoing longwave radiation (OLR) data from 1979 to 2019, we assess the relationship at the intraseasonal time scale using pentad-mean time series. We show that OLR anomalies are correlated with circulation anomalies northwest and northeast of the region of precipitation. Decreased OLR (increased precipitation) corresponds to increased geopotential heights and anticyclonic circulation anomalies in the 300–100-hPa layer and an opposite response in the lower-tropospheric 850–600-hPa layer. The results are consistent with the established theory of the Rossby wave response to latent heating. The increase in height, which is strongest near 150 hPa, indicates that increased precipitation is associated with a strengthened NAMA. UTLS temperatures also have significant correlations with OLR, with cold (warm) anomalies occurring above (below) the core of the anticyclonic anomaly consistent with large-scale balance. The vertical structure of geopotential and temperature anomalies is compared to simulations using an idealized general circulation model, which shows that such a vertical structure is a consistent response to diabatic heating. Correlations at the interannual time scale resemble those at the intraseasonal time scale, demonstrating that precipitation is related to the NAMA at both time scales.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kai-Wei Chang, kwchang30@tamu.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 22382257, https://doi.org/10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K.-W., and T. S. L’Ecuyer, 2019: Role of latent heating vertical distribution in the formation of the tropical cold trap. J. Geophys. Res. Atmos., 124, 78367851, https://doi.org/10.1029/2018JD030194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, C. E., J. B. Smith, K. M. Bedka, and J. G. Anderson, 2019: Identifying source regions and the distribution of cross-tropopause convective outflow over North America during the warm season. J. Geophys. Res. Atmos., 124, 1375013762, https://doi.org/10.1029/2019JD031382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 42, 19441959, https://doi.org/10.1175/1520-0469(1985)042<1944:LROAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethof, A., A. O’Neill, J. M. Slingo, and H. G. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 10791106, https://doi.org/10.1002/qj.1999.49712555602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., and D. P. Brown, 2009: Relationships among monsoon-season circulation patterns, gulf surges, and rainfall within the Lower Colorado River Basin, USA. Theor. Appl. Climatol., 97, 373383, https://doi.org/10.1007/s00704-008-0081-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, J. E., D. P. Brown, and J. Mccann, 2013: Multi-decadal changes in the North American monsoon anticyclone. Int. J. Climatol., 33, 22742279, https://doi.org/10.1002/joc.3576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, https://doi.org/10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1995: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions. J. Geophys. Res., 100, 16 67516 688, https://doi.org/10.1029/95JD01263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garny, H., and W. J. Randel, 2013: Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions. J. Geophys. Res. Atmos., 118, 13 42113 433, https://doi.org/10.1002/2013JD020908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garny, H., and W. J. Randel, 2016: Transport pathways from the Asian monsoon anticyclone to the stratosphere. Atmos. Chem. Phys., 16, 27032718, https://doi.org/10.5194/acp-16-2703-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, https://doi.org/10.1029/2004JD004878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., and A. E. Gill, 1984: Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203217, https://doi.org/10.1002/qj.49711046314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Higgins, R. W., and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American Monsoon System. J. Climate, 14, 403417, https://doi.org/10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, https://doi.org/10.1002/qj.49712454911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F.-F. Jin, 1991: The initial value problem for tropical perturbations to a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 117, 299317, https://doi.org/10.1002/qj.49711749803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, https://doi.org/10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate, 15, 16591673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2018: NASA Global Precipitation Measurement (GPM) Integrated multi-satellitE retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 6, 39 pp., https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf.

  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, https://doi.org/10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. Lim, 1982: Thermally driven motions in an equatorial β-plane: Hadley and Walker circulations during the winter monsoon. Mon. Wea. Rev., 110, 336353, https://doi.org/10.1175/1520-0493(1982)110<0336:TDMIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pittman, J. V., and Coauthors, 2007: Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment. J. Geophys. Res., 112, D08304, https://doi.org/10.1029/2006JD007851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ploeger, F., and Coauthors, 2013: Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer. J. Geophys. Res., 118, 81118127, https://doi.org/10.1002/jgrd.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovic, J. M., and R. A. Plumb, 2002: Eddy shedding from the upper-tropospheric Asian monsoon anticyclone. J. Atmos. Sci., 58, 93104, https://doi.org/10.1175/1520-0469(2001)058<0093:ESFTUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005JD006490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., K. Zhang, and R. Fu, 2015: What controls stratospheric water vapor in the NH summer monsoon regions? J. Geophys. Res. Atmos., 120, 79888001, https://doi.org/10.1002/2015JD023622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, https://doi.org/10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586, https://doi.org/10.1175/JAS3699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siu, L. W., and K. P. Bowman, 2019: Forcing of the upper-tropospheric monsoon anticyclones. J. Atmos. Sci., 76, 19371954, https://doi.org/10.1175/JAS-D-18-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2013: Upscale effects of deep convection during the North American monsoon. J. Atmos. Sci., 70, 26812695, https://doi.org/10.1175/JAS-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, M., and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617637, https://doi.org/10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, https://doi.org/10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 477 0 0
Full Text Views 1907 1356 317
PDF Downloads 532 114 7