Dependence of Ice Microphysical Properties on Environmental Parameters: Results from HAIC-HIWC Cayenne Field Campaign

Yachao Hu aDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
bCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yachao Hu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6390-4707
,
Greg M. McFarquhar bCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Wei Wu bCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Wei Wu in
Current site
Google Scholar
PubMed
Close
,
Yongjie Huang cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
dCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yongjie Huang in
Current site
Google Scholar
PubMed
Close
,
Alfons Schwarzenboeck eLaboratoire de Météorologie Physique, UCA, CNRS, Aubière, France

Search for other papers by Alfons Schwarzenboeck in
Current site
Google Scholar
PubMed
Close
,
Alain Protat fAustralian Bureau of Meteorology, Melbourne, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
,
Alexei Korolev gEnvironment and Climate Change Canada, Toronto, Canada

Search for other papers by Alexei Korolev in
Current site
Google Scholar
PubMed
Close
,
Robert M Rauber hDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M Rauber in
Current site
Google Scholar
PubMed
Close
, and
Hongqing Wang aDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Hongqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

High ice water content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana, in 2015. Observations from in situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter (MMD), ice water content (IWC), and total number concentration (Nt) for particles with maximum dimension (Dmax) > 55 μm vary with environmental conditions, temperature (T), and convective properties such as vertical velocity (w), MCS age, distance away from convective peak (L), and surface characteristics. IWC is significantly correlated with w, whereas MMD decreases and Nt increases with decreasing T consistent with aggregation, sedimentation, and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m−3, but decreases with IWC when IWC > 0.5 g m−3 for −15° ≤ T ≤ −5°C. Trends also depend on environmental conditions, such as the presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWCs decrease with increasing L at lower T. The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T. The strength of correlation between IWC and Nt increases as T decreases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Greg McFarquhar, mcfarq@ou.edu

Abstract

High ice water content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana, in 2015. Observations from in situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter (MMD), ice water content (IWC), and total number concentration (Nt) for particles with maximum dimension (Dmax) > 55 μm vary with environmental conditions, temperature (T), and convective properties such as vertical velocity (w), MCS age, distance away from convective peak (L), and surface characteristics. IWC is significantly correlated with w, whereas MMD decreases and Nt increases with decreasing T consistent with aggregation, sedimentation, and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m−3, but decreases with IWC when IWC > 0.5 g m−3 for −15° ≤ T ≤ −5°C. Trends also depend on environmental conditions, such as the presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWCs decrease with increasing L at lower T. The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T. The strength of correlation between IWC and Nt increases as T decreases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Greg McFarquhar, mcfarq@ou.edu
Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53, 28032812, https://doi.org/10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ai, Y. F., W. B. Li, Z. Y. Meng, and J. Li, 2016: Life cycle characteristics of MCSs in middle east China tracked by geostationary satellite and precipitation estimates. Mon. Wea. Rev., 144, 25172530, https://doi.org/10.1175/MWR-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount Icing Detector. J. Atmos. Oceanic Technol., 6, 971979, https://doi.org/10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 1029, https://doi.org/10.1016/j.atmosres.2011.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Boudala, F. S., G. A. Isaac, N. A. McFarlane, and J. Li, 2007: The sensitivity of the radiation budget in a climate simulation to neglecting the effect of small ice particles. J. Climate, 20, 35273541, https://doi.org/10.1175/JCLI4191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterization of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136, 323344, https://doi.org/10.1002/qj.557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., R. Roca, T. Fiolleau, and D. E. Poan, 2016: Macrophysical, microphysical, and radiative properties of tropical mesoscale convective systems over their life cycle. J. Climate, 29, 33533371, https://doi.org/10.1175/JCLI-D-15-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bravin, M., J. W. Strapp, and J. Mason, 2015: An investigation into location and convective lifecycle trends in an ice crystal icing engine database. Tech. Rep., SAE Tech. Paper, 8 pp.

  • Chen, D., J. Guo, H. Wang, J. Li, M. Min, W. Zhao, and D. Yao, 2018: The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from Advanced Himawari Imager. J. Geophys. Res. Atmos., 123, 37243739, https://doi.org/10.1002/2017JD028044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chopde, N. R., and M. Nichat, 2013: Landmark based shortest path detection by using A* and Haversine formula. Int. J. Innov. Res. Comput. Commun. Eng., 1, 298302.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., T. Lang, S. A. Rutledge, N. Guy, E. J. Zipser, J. Zawislak, and R. Holzworth, 2010: Characteristics of an African easterly wave observed during NAMMA. J. Atmos. Sci., 67, 325, https://doi.org/10.1175/2009JAS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claffey, K. J., K. F. Jones, and C. C. Ryerson, 1995: Use and calibration of Rosemount ice detectors for meteorological research. Atmos. Res., 36, 277286, https://doi.org/10.1016/0169-8095(94)00042-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515528, https://doi.org/10.1175/1520-0426(2001)018<0515:ATRIDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32,https://doi.org/10.1175/0065-9401-21.43.29.

    • Crossref
    • Export Citation
  • Cotton, R. J., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, https://doi.org/10.1002/qj.2058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, C. R., J. MacLeod, J. Strapp, and D. Buttsworth, 2008: Isokinetic total water content probe in a naturally aspirating configuration: Initial aerodynamic design and testing. Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA-2008-435, https://doi.org/10.2514/6.2008-435.

    • Crossref
    • Export Citation
  • Davison, C. R., J. W. Strapp, L. E. Lilie, T. P. Ratvasky, and C. Dumont, 2016: Isokinetic TWC evaporator probe: Calculations and systemic error analysis. Proc. Eighth AIAA Atmospheric and Space Envrionments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, AIAA-2016-4060, https://doi.org/10.2514/6.2016-4060.

    • Crossref
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezitter, F., A. Grandin, J. L. Brenguier, F. Hervy, H. Schlager, P. Villedieu, and G. Zalamansky, 2013: HAIC (High altitude ice crystals). Proc. Fifth AIAA Atmospheric and Space Environments Conf., San Diego, CA, American Institute of Aeronautics and Astronautics, AIAA-2013-2674, https://doi.org/10.2514/6.2013-2674.

    • Crossref
    • Export Citation
  • Ding, S., G. M. McFarquhar, S. W. Nesbitt, R. J. Chase, M. R. Poellot, and H. Wang, 2020: Dependence of mass—Dimensional relationships on median mass diameter. Atmosphere, 11, 756, https://doi.org/10.3390/atmos11070756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, M. F., E. R. Williams, C. Kessinger, G. Blackburn, P. H. Herzegh, R. L. Bankert, S. Miller, and F. R. Mosher, 2008: The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations. J. Appl. Meteor. Climatol., 47, 164184, https://doi.org/10.1175/2007JAMC1471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, https://doi.org/10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 2011: The Physics of Rainclouds. Cambridge University Press, 410 pp., https://cds.cern.ch/record/2051935.

  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, https://doi.org/10.5194/acp-14-11367-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, E., and Coauthors, 2017: Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems. Atmos. Meas. Tech., 10, 22392252, https://doi.org/10.5194/amt-10-2239-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Formenti, P., and Coauthors, 2001: Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Regional Experiment (CLAIRE) in March 1998. J. Geophys. Res., 106, 14 91914 934, https://doi.org/10.1029/2000JD900827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., A. Protat, D. Leroy, and E. Fontaine, 2016: Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system. Atmos. Chem. Phys., 16, 87678789, https://doi.org/10.5194/acp-16-8767-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A., A. Ackerman, A. Grandin, F. Dezitter, M. Weber, J. Strapp, A. Korolev, and C. Williams, 2015: High ice water content at low radar reflectivity near deep convection—Part 1: Consistency of in situ and remote-sensing observations with stratiform rain column simulations. Atmos. Chem. Phys., 15, 11 71311 728, https://doi.org/10.5194/acp-15-11713-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98, 22 95922 967, https://doi.org/10.1029/93JD01617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., C. R. Williams, W. L. Ecklund, and P. E. Johnstonb, 1999: Development and application of Doppler radar profilers to ground validation of satellite precipitation measurements. Adv. Space Res., 24, 931934, https://doi.org/10.1016/S0273-1177(99)00366-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., S. L. Eddins, and R. E. Woods, 2004: Digital Image Publishing Using MATLAB. Prentice Hall, 609 pp.

  • Grandin, A., J. M. Merle, M. Weber, J. Strapp, A. Protat, and P. King, 2014: AIRBUS flight tests in high total water content regions. Proc. Sixth AIAA Atmospheric and Space Environments Conf., Atlanta, GA, American Institute of Aeronautics and Astronautics, AIAA-2014-2753, https://doi.org/10.2514/6.2014-2753.

    • Crossref
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s tropical cloud systems and processes experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88, 867882, https://doi.org/10.1175/BAMS-88-6-867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, J., M. Gehrmann, K. Kohnert, S. Metzger, and T. Sachs, 2018: New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns. Atmos. Meas. Tech., 11, 45674581, https://doi.org/10.5194/amt-11-4567-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17, 15661572, https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus: Microphysical properties. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, https://doi.org/10.1093/oso/9780195130720.003.0008.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. M. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66, 35303562, https://doi.org/10.1175/2009JAS3107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, https://doi.org/10.1175/2010JAS3507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., and C. Thorncroft, 1997: Distribution and statistics of the African mesoscale convective systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837, https://doi.org/10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 104, Elsevier, 496 pp.

  • Houze, R. A., Jr., J. Wang, J. Fan, S. Brodzik, and Z. Feng, 2019: Extreme convective storms over high-latitude continental areas where maximum warming is occurring. Geophys. Res. Lett., 46, 40594065, https://doi.org/10.1029/2019GL082414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2021: Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Evaluation of simulations using bulk microphysical schemes. Atmos. Chem. Phys., 21, 69196944, https://doi.org/10.5194/acp-21-6919-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324 .

    • Crossref
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, A. M. Fridlind, and R. Atlas, 2015: The dependence of cirrus gamma size distributions expressed as volumes in N0-λ-μ phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS). J. Geophys. Res. Atmos., 120, 10 35110 377, https://doi.org/10.1002/2015JD023492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941965, https://doi.org/10.1002/qj.49712555510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 55195537, https://doi.org/10.5194/acp-9-5519-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, https://doi.org/10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kakar, R., M. Goodman, R. Hood, and A. Guillory, 2006: Overview of the Convection and Moisture Experiment (CAMEX). J. Atmos. Sci., 63, 518, https://doi.org/10.1175/JAS3607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolios, S., and H. Feidas, 2010: A warm season climatology of mesoscale convective systems in the Mediterranean basin using satellite data. Theor. Appl. Climatol., 102, 2942, https://doi.org/10.1007/s00704-009-0241-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, https://doi.org/10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. R. Field, 2015: Assessment of performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probes measurements. Atmos. Meas. Tech., 8, 761777, https://doi.org/10.5194/amt-8-761-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967–973, https://doi.org/10.1175/2010BAMS3141.1.

    • Crossref
    • Export Citation
  • Korolev, A. V., E. F. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, https://doi.org/10.1175/JTECH-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, https://doi.org/10.1175/JTECH-D-13-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., I. Heckman, and M. Wolde, 2018: Observation of phase composition and humidity in oceanic mesoscale convective systems. 15th Conf. on Cloud Physics, Vancouver, BC, Canada, Amer. Meteor. Soc., 236, https://ams.confex.com/ams/15CLOUD15ATRAD/webprogram/Paper347111.html.

  • Korolev, A. V., and Coauthors, 2020: A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 13911429, https://doi.org/10.5194/acp-20-1391-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, https://doi.org/10.5194/acp-9-3505-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurent, H., L. Machado, C. Morales, and L. Durieux, 2002: Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res., 107, 8054, https://doi.org/10.1029/2001JD000337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., L. J. Angus, and A. J. Heymsfield, 1998: Cloud particle measurements in thunderstorm anvils and possible weather threat to aviation. J. Aircr., 35, 113121, https://doi.org/10.2514/2.2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K.Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Barker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, https://doi.org/10.1029/2009JD013017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1980: The contribution of mesoscale motions to the mass and heat fluxes of an intense tropical convective system. J. Atmos. Sci., 37, 784796, https://doi.org/10.1175/1520-0469(1980)037<0784:TCOMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, D., and Coauthors, 2016a: HAIC/HIWC field campaigns—Specific findings on ice crystals characteristics in high ice water content cloud regions. Proc. Eighth AIAA Atmospheric and Space Environments Conf., Washington, DC, American Institute of Aeronautics and Astronautics, AIAA 2016-4056, https://doi.org/10.2514/6.2016-4056.

    • Crossref
    • Export Citation
  • Leroy, D., E. Fontaine, A. Schwarzenboeck, and J. W. Strapp, 2016b: Ice crystal sizes in high ice water content clouds. Part I: On the computation of median mass diameters from in situ measurements. J. Atmos. Oceanic Technol., 33, 24612476, https://doi.org/10.1175/JTECH-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, D., and Coauthors, 2017: Ice crystal sizes in high ice water content clouds. Part II: Statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. J. Atmos. Oceanic Technol., 34, 117136, https://doi.org/10.1175/JTECH-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, https://doi.org/10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45, 15941605, https://doi.org/10.1175/1520-0469(1988)045<1594:COD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. Lemone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley, 430 pp.

    • Crossref
    • Export Citation
  • Mascio, J., G. M. McFarquhar, T. Hsieh, M. Freer, A. Dooley, and A. J. Heymsfield, 2020: The use of gamma distributions to quantify the dependence of cloud particle size distributions in hurricanes on cloud and environmental conditions. Quart. J. Roy. Meteor. Soc., 146, 21162137, https://doi.org/10.1002/qj.3782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J., W. Strapp, and P. Chow, 2006: The ice particle threat to engines in flight. Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA-2006-206, https://doi.org/10.2514/6.2006-206.

    • Crossref
    • Export Citation
  • Matsui, T., J. Chern, W. Tao, S. Lang, M. Satoh, T. Hashino, and T. Kubota, 2016: On the land–ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm-resolving models. J. Hydrometeor., 17, 14251445, https://doi.org/10.1175/JHM-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629646, https://doi.org/10.1175/BAMS-89-5-629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18, 543558, https://doi.org/10.1175/1520-0426(2001)018<0543:TOICFM>2.0.CO;2.