Circulation around a Constrained Curve: An Alternative Analysis Tool for Diagnosing the Origins of Tornado Rotation in Numerical Supercell Simulations

Robert Davies-Jones aNOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert Davies-Jones in
Current site
PubMed
Close
https://orcid.org/0000-0002-2740-561X
and
Paul M. Markowski bDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, State College, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
PubMed
Close
Restricted access

Abstract

Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real tornadoes, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids, parcel trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated. To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem either to moving circuits that are constrained to simple surfaces or to a “hybrid” circuit defined next. Let A be the horizontal surface at one grid spacing off the ground. Above A the circuit moves as a material circuit. Horizontal curve segments that move in A with the horizontal wind replace segments of the material circuit that dip below A. The circulation equation for the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal. This term is easily evaluated on A. Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation.

Davies-Jones’s status: Emeritus.

Corresponding author: Robert Davies-Jones, bobdj1066@yahoo.com

Abstract

Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real tornadoes, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids, parcel trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated. To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem either to moving circuits that are constrained to simple surfaces or to a “hybrid” circuit defined next. Let A be the horizontal surface at one grid spacing off the ground. Above A the circuit moves as a material circuit. Horizontal curve segments that move in A with the horizontal wind replace segments of the material circuit that dip below A. The circulation equation for the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal. This term is easily evaluated on A. Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation.

Davies-Jones’s status: Emeritus.

Corresponding author: Robert Davies-Jones, bobdj1066@yahoo.com
Save
• Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

• Crossref
• Export Citation
• Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early Tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 20452066, https://doi.org/10.1175/MWR-D-18-0338.1.

• Crossref
• Export Citation
• Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

• Crossref
• Export Citation
• Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, https://doi.org/10.1175/MWR-D-12-00131.1.

• Crossref
• Export Citation
• Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

• Crossref
• Export Citation
• Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

• Crossref
• Export Citation
• Davies-Jones, R., 2004: Growth of circulation around supercell updrafts. J. Atmos. Sci., 61, 28632876, https://doi.org/10.1175/JAS-3341.1.

• Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, https://doi.org/10.1175/2007JAS2516.1.

• Crossref
• Export Citation
• Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

• Crossref
• Export Citation
• Davies-Jones, R., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

• Crossref
• Export Citation
• Davies-Jones, R., and V. T. Wood, 2006: Simulated Doppler velocity signatures of evolving tornado-like vortices. J. Atmos. Oceanic Technol., 23, 10291048, https://doi.org/10.1175/JTECH1903.1.

• Crossref
• Export Citation
• Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe. Convective Storms, Meteor. Monogr., No. 50, 167222, https://doi.org/10.1175/0065-9401-28.50.167.

• Export Citation
• D’haeseleer, W. D., W. N. G. Hitchon, J. D. Callen, and J. L. Shohet, 1991: Flux Coordinates and Magnetic Field Structure. Springer-Verlag, 241 pp.

• Crossref
• Export Citation
• Dombre, T., U. Frisch, J. M. Greene, M. Henon, A. Mahr, and A. M. Soward, 1986: Chaotic streamlines in the ABC flows. J. Fluid Mech., 167, 353391, https://doi.org/10.1017/S0022112086002859.

• Crossref
• Export Citation
• Dutton, J. A., 1986: The Ceaseless Wind. Dover, 617 pp.

• Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeed in tornado-like vortices. J. Atmos. Sci., 43, 23282340, https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

• Crossref
• Export Citation
• Fujita, T. T., 1973; Proposed mechanism of tornado formation from rotating thunderstorm. Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 191–196.

• Glaser, A. H., 1960: An observational deduction of the structure of a tornado vortex. Cumulus Dynamics, C. Anderson, Ed., Pergamon Press, 157–166.

• Hoecker, W. H., 1960: Wind speed and air flow patterns in the Dallas tornado of April 2, 1957. Mon. Wea. Rev., 88, 167180, https://doi.org/10.1175/1520-0493(1960)088<0167:WSAAFP>2.0.CO;2.

• Crossref
• Export Citation
• Lewellen, S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39.

• Crossref
• Export Citation
• Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

• Crossref
• Export Citation
• Mandelbrot, B. B., 1982: The Fractal Geometry of Nature. W. H. Freeman and Company, 480 pp.

• Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

• Crossref
• Export Citation
• Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

• Crossref
• Export Citation
• Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823, https://doi.org/10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

• Crossref
• Export Citation
• Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

• Crossref
• Export Citation
• Markowski, P. M., N. T. Lis, D. D. Turner, T. R. Lee, and M. S. Buban, 2019: Observations of near-surface vertical wind profiles and vertical momentum fluxes from VORTEX-SE 2017: Comparisons to Monin–Obukhov similarity theory. Mon. Wea. Rev., 147, 38113824, https://doi.org/10.1175/MWR-D-19-0091.1.

• Crossref
• Export Citation
• Morton, B. R., 1966: Geophysical vortices. Prog. Aeronaut. Sci. 7, 145193, https://doi.org/10.1016/0376-0421(66)90008-X.

• Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

• Crossref
• Export Citation
• Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

• Crossref
• Export Citation
• Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713495, https://doi.org/10.1175/JAS-D-15-0332.1.

• Crossref
• Export Citation
• Roberts, B., M. Xue, and D. T. Dawson, 2020: The effect of surface drag strength on mesocyclone intensification and tornadogenesis in idealized supercell simulations. J. Atmos. Sci., 77, 16991721, https://doi.org/10.1175/JAS-D-19-0109.1.

• Crossref
• Export Citation
• Rott, N., 1958: On the viscous core of a line vortex. Z. Angew. Math. Phys., 9, 543553, https://doi.org/10.1007/BF02424773.

• Rotunno, R., 1986: Tornadoes and tornadogenesis. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 414–436.

• Crossref
• Export Citation
• Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

• Crossref
• Export Citation
• Shapiro, A. H., 1972: Vorticity. Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes, MIT Press, 63–74, http://web.mit.edu/hml/ncfmf/09VOR.pdf.

• Tao, T., and T. Tamura, 2020: Numerical study of the 6 May 2012 Tsukuba supercell tornado: Vorticity sources responsible for tornadogenesis. Mon. Wea. Rev., 148, 12051228, https://doi.org/10.1175/MWR-D-19-0095.1.

• Crossref
• Export Citation
• Trapp, R. J., and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 37573778, https://doi.org/10.1175/1520-0469(1995)052<3757:TLVIAS>2.0.CO;2.

• Crossref
• Export Citation
• Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

• Crossref