• Adam, O., and N. Harnik, 2013: Idealized annually averaged macroturbulent Hadley circulation in a shallow-water model. J. Atmos. Sci., 70, 284302, https://doi.org/10.1175/JAS-D-12-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, https://doi.org/10.1175/JCLI-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., and Coauthors, 2018: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and T. Birner, 2011: Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305, https://doi.org/10.1175/JAS-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Climate, 32, 859875, https://doi.org/10.1175/JCLI-D-18-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., P. Zhang, and J. Lu, 2020: Sensitivity of the latitude of the westerly jet stream to climate forcing. Geophys. Res. Lett., 47, e2019GL086563, https://doi.org/10.1029/2019GL086563.

    • Crossref
    • Export Citation
  • Choi, J., S.-W. Son, J. Lu, and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 25902597, https://doi.org/10.1002/2014GL059426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., 2020: Source code modifications for the GFDL Grey Radiation Aquaplanet Model (v1.0). Zenodo, https://doi.org/10.5281/zenodo.3744495.

    • Crossref
    • Export Citation
  • Davis, N., and T. Birner, 2016: Climate model biases in the width of the tropical belt. J. Climate, 29, 19351954, https://doi.org/10.1175/JCLI-D-15-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2019: Eddy influences on the Hadley circulation. J. Adv. Model. Earth Syst., 11, 15631581, https://doi.org/10.1029/2018MS001554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., D. J. Seidel, T. Birner, S. M. Davis, and S. Tilmes, 2016: Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. Atmos. Chem. Phys., 16, 10 08310 095, https://doi.org/10.5194/acp-16-10083-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., and P. A. O’Gorman, 2017: Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. J. Atmos. Sci., 74, 513530, https://doi.org/10.1175/JAS-D-16-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, https://doi.org/10.1175/JCLI-D-15-0424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007a: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007b: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115.

    • Crossref
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, https://doi.org/10.1002/2014GL061638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and S. M. Davis, 2020: Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys., 20, 52495268, https://doi.org/10.5194/acp-20-5249-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and Coauthors, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 15511571, https://doi.org/10.1175/JCLI-D-18-0444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Woods Hole Oceanographic Institute, 70 pp., https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/woods_hole.pdf.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, M., and T. M. Merlis, 2019: The role of the nonlinearity of the Stefan–Boltzmann law on the structure of radiatively forced temperature change. J. Climate, 32, 335348, https://doi.org/10.1175/JCLI-D-17-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., G.-Y. Yang, and R. M. Fonseca, 2020: The detailed dynamics of the June–August Hadley cell. Quart. J. Roy. Meteor. Soc., 146, 557575, https://doi.org/10.1002/qj.3702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 83878393, https://doi.org/10.1175/JCLI-D-12-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and G. K. Vallis, 2012: The relationship between the speed and the latitude of an eddy-driven jet in a stirred barotropic model. J. Atmos. Sci., 69, 32513263, https://doi.org/10.1175/JAS-D-11-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, https://doi.org/10.1029/2009GL041615.

    • Crossref
    • Export Citation
  • Kidston, J., G. K. Vallis, S. M. Dean, and J. A. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, https://doi.org/10.1175/2010JCLI3738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2008: Extent of Hadley circulations in dry atmospheres. Geophys. Res. Lett., 35, L23803, https://doi.org/10.1029/2008GL035847.

    • Crossref
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere-troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, https://doi.org/10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and T. Shaw, 2018: Connecting the energy and momentum flux response to climate change using the Eliassen–Palm relation. J. Climate, 31, 74017416, https://doi.org/10.1175/JCLI-D-17-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, https://doi.org/10.1175/2010JAS3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, https://doi.org/10.1175/JAS-D-14-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipat, B. R., G. Tselioudis, K. M. Grise, and L. M. Polvani, 2017: CMIP5 models’ shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44, 57395748, https://doi.org/10.1002/2017GL073151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2014: Understanding midlatitude jet variability and change using Rossby wave chromatography: Poleward-shifted jets in response to external forcing. J. Atmos. Sci., 71, 23702389, https://doi.org/10.1175/JAS-D-13-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., L. Sun, Y. Wu, and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming-like thermal forcing. J. Climate, 27, 22972316, https://doi.org/10.1175/JCLI-D-13-00372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2013: Storm track shifts under climate change: What can be learned from large-scale dry dynamics. J. Climate, 26, 99239930, https://doi.org/10.1175/JCLI-D-13-00404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2017: Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci., 74, 93110, https://doi.org/10.1175/JAS-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2018: Linking Hadley circulation and storm tracks in a conceptual model of the atmospheric energy balance. J. Atmos. Sci., 75, 841856, https://doi.org/10.1175/JAS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 19571977, https://doi.org/10.1007/s00382-014-2138-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., D. Waugh, and K. Grise, 2019: Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys. Res. Lett., 46, 70457053, https://doi.org/10.1029/2019GL083345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and M. Henry, 2018: Simple estimates of polar amplification in moist diffusive energy balance models. J. Climate, 31, 58115824, https://doi.org/10.1175/JCLI-D-17-0578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooring, T. A., and T. A. Shaw, 2020: Atmospheric diffusivity: A new energetic framework for understanding the midlatitude circulation response to climate change. J. Geophys. Res. Atmos., 125, e2019JD031206, https://doi.org/10.1029/2019JD031206.

    • Crossref
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Ann. Rev. Earth Planet. Sci., 34, 655–688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2016: What can moist thermodynamics tell us about circulation shifts in response to uniform warming? Geophys. Res. Lett., 43, 45664575, https://doi.org/10.1002/2016GL068712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Tan, 2018: Testing latitudinally dependent explanations of the circulation response to increased CO2 using aquaplanet models. Geophys. Res. Lett., 45, 98619869, https://doi.org/10.1029/2018GL078974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, https://doi.org/10.1175/2010JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17, 2352–2367, https://doi.org/10.1175/1520-0442(2004) 017⟨2352:ASOTSC⟩2.0.CO;2

    • Crossref
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758–766, https://doi.org/10.1175/1520-0493(1981)109%3C0758:AEAAMC%3E2.0.CO;2.

    • Crossref
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., 73, 24272444, https://doi.org/10.1175/JAS-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, D. W. Waugh, and S. M. Davis, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett., 43, 10 49610 503, https://doi.org/10.1002/2016GL070917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., K. M. Grise, S. M. Davis, K. Karnauskas, and N. Davis, 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends. J. Geophys. Res. Atmos., 124, 61046119, https://doi.org/10.1029/2018JD030100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., and Coauthors, 2020: Tropical widening: From global variations to regional impacts. Bull. Amer. Meteor. Soc., 101, E897–E904, https://doi.org/10.1175/BAMS-D-19-0047.1.

    • Crossref
    • Export Citation
  • Sun, L., G. Chen, and J. Lu, 2013: Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J. Atmos. Sci., 70, 24872504, https://doi.org/10.1175/JAS-D-12-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z., O. Lachmy, and T. A. Shaw, 2019: The sensitivity of the jet stream response to climate change to radiative assumptions. J. Adv. Model. Earth Syst., 11, 934956, https://doi.org/10.1029/2018MS001492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, https://doi.org/10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tivig, M., V. Grutzun, V. O. John, and S. A. Buehler, 2020: Trends in upper-tropospheric humidity: Expansion of the subtropical dry zones? J. Climate, 33, 21492161, https://doi.org/10.1175/JCLI-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813, https://doi.org/10.1029/2004GL022304.

    • Crossref
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., E. P. Gerber, and L. M. Polvani, 2012: Abrupt circulation responses to tropical upper-tropospheric warming in a relatively simple stratosphere-resolving AGCM. J. Climate, 25, 40974115, https://doi.org/10.1175/JCLI-D-11-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., D. M. W. Frierson, and Q. Fu, 2019: Hemispheric asymmetry of tropical expansion under CO2 forcing. Geophys. Res. Lett., 46, 92319240, https://doi.org/10.1029/2019GL083695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., R. Seager, T. A. Shaw, M. Ting, and N. Naik, 2013: Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: Atmospheric transient adjustment and its dynamics. J. Climate, 26, 918935, https://doi.org/10.1175/JCLI-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., K. M. Grise, S. A. Klein, C. Zhou, A. M. DeAngelis, and M. W. Christensen, 2018: Drivers of the low-cloud response to poleward jet shifts in the North Pacific in observations and models. J. Climate, 31, 79257947, https://doi.org/10.1175/JCLI-D-18-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 24
Full Text Views 17 17 17
PDF Downloads 21 21 21

Eddy-Mediated Hadley Cell Expansion due to Axisymmetric Angular Momentum Adjustment to Greenhouse Gas Forcings

View More View Less
  • 1 aAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 bMeteorological Institute, Ludwig-Maximilians-University, Munich, Germany
Restricted access

Abstract

The poleward expansion of the Hadley cells is one of the most robust modeled responses to increasing greenhouse gas concentrations. There are many proposed mechanisms for expansion, and most are consistent with modeled changes in thermodynamics, dynamics, and clouds. The adjustment of the eddies and the mean flow to greenhouse gas forcings, and to one another, complicates any effort toward a deeper understanding. Here we modify the Gray Radiation and Moist Aquaplanet (GRANDMA) model to uncouple the eddy and mean flow responses to forcings. When eddy forcings are held constant, the purely axisymmetric response of the Hadley cell to a greenhouse gas–like forcing is an intensification and poleward tilting of the cell with height in response to an axisymmetric increase in angular momentum in the subtropics. The angular momentum increase drastically alters the circulation response compared to axisymmetric theories, which by nature neglect this adjustment. Model simulations and an eddy diffusivity framework demonstrate that the axisymmetric increase in subtropical angular momentum—the direct manifestation of the radiative–convective equilibrium temperature response—drives a poleward shift of the eddy stresses which leads to Hadley cell expansion. Prescribing the eddy response to the greenhouse gas–like forcing shows that eddies damp, rather than drive, changes in angular momentum, moist static energy transport, and momentum transport. Expansion is not driven by changes in baroclinic instability, as would otherwise be diagnosed from the fully coupled simulation. These modeling results caution any assessment of mechanisms for circulation change within the fully coupled wave–mean flow system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas A. Davis, nadavis@ucar.edu

Abstract

The poleward expansion of the Hadley cells is one of the most robust modeled responses to increasing greenhouse gas concentrations. There are many proposed mechanisms for expansion, and most are consistent with modeled changes in thermodynamics, dynamics, and clouds. The adjustment of the eddies and the mean flow to greenhouse gas forcings, and to one another, complicates any effort toward a deeper understanding. Here we modify the Gray Radiation and Moist Aquaplanet (GRANDMA) model to uncouple the eddy and mean flow responses to forcings. When eddy forcings are held constant, the purely axisymmetric response of the Hadley cell to a greenhouse gas–like forcing is an intensification and poleward tilting of the cell with height in response to an axisymmetric increase in angular momentum in the subtropics. The angular momentum increase drastically alters the circulation response compared to axisymmetric theories, which by nature neglect this adjustment. Model simulations and an eddy diffusivity framework demonstrate that the axisymmetric increase in subtropical angular momentum—the direct manifestation of the radiative–convective equilibrium temperature response—drives a poleward shift of the eddy stresses which leads to Hadley cell expansion. Prescribing the eddy response to the greenhouse gas–like forcing shows that eddies damp, rather than drive, changes in angular momentum, moist static energy transport, and momentum transport. Expansion is not driven by changes in baroclinic instability, as would otherwise be diagnosed from the fully coupled simulation. These modeling results caution any assessment of mechanisms for circulation change within the fully coupled wave–mean flow system.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas A. Davis, nadavis@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.35 MB)
Save