• Albrecht, R., S. Goodman, D. Buechler, R. Blakeslee, and H. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. G. Dash, 1989: Charge transfer in thunderstorms and the surface melting of ice. J. Cryst. Growth, 97, 770776, https://doi.org/10.1016/0022-0248(89)90581-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blakeslee, R. J., and Coauthors, 2020: Three years of the lightning imaging sensor onboard the International Space Station: Expanded global coverage and enhanced applications. J. Geophys. Res. Atmos., 125, e2020JD032918, https://doi.org/10.1029/2020JD032918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. A. Thornton, and K. S. Virts, 2018: Locally enhanced aerosols over a shipping lane produce convective invigoration but weak overall indirect effects in cloud-resolving simulations. Geophys. Res. Lett., 45, 93059313, https://doi.org/10.1029/2018GL078682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic–Dynamic Meteorology in Midlatitudes: Observations and Theory of Weather Systems. Vol. II. Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., R. E. Benestad, P. R. Krehbiel, and J. Latham, 1997: Observations of supercooled raindrops in New Mexico summertime cumuli. J. Atmos. Sci., 54, 569575, https://doi.org/10.1175/1520-0469(1997)054<0569:OOSRIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., H. J. Christian, K. Driscoll, and J. Latham, 2001: Determination of precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos. Res., 59–60, 217229, https://doi.org/10.1016/S0169-8095(01)00117-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., 2002: Lightning scaling relations revisited. J. Atmos. Sci., 59, 10861104, https://doi.org/10.1175/1520-0469(2002)059<1086:LSRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., C. Wong, E. Williams, R. Boldi, H. Christian, and S. Goodman, 1998: Global validation of single-station Schumann resonance lightning location. J. Atmos. Sol.-Terr. Phys., 60, 701712, https://doi.org/10.1016/S1364-6826(98)00035-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248, https://doi.org/10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43, 277295, https://doi.org/10.1016/S0169-8095(96)00043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brownscombe, J. L., and P. Goldsmith, 1972: On the possible production of submicron ice fragments during riming or the freezing of droplets in free fall. Preprints, Int. Cloud Phys. Conf., London, United Kingdom, Royal Meteorological Society, 27–28.

  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000, https://doi.org/10.1029/97JD02626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-692LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and J. Latham, 1998: Satellite measurements of global lightning. Quart. J. Roy. Meteor. Soc., 124, 17711773, https://doi.org/10.1002/qj.49712454919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, J. G., B. L. Mason, and J. S. Wettlaufer, 2001: Theory of charge and mass transfer in ice-ice collisions. J. Geophys. Res., 106, 20 39520 402, https://doi.org/10.1029/2001JD900109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., J. Latham, W. A. Petersen, S. M. Ellis, and H. J. Christian, 2005: On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos. Res., 76, 114126, https://doi.org/10.1016/j.atmosres.2004.11.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. DeMaria, J. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and V. T. J. Phillips, 2003: Boundary-layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108, 4701, https://doi.org/10.1029/2003JD003773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and A. Bansemer, 2019: Electrification in mesoscale updrafts of deep stratiform and anvil clouds in Florida. J. Geophys. Res. Atmos., 124, 10211049, https://doi.org/10.1029/2018JD029130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eddy, A. J., 2018: Environmental conditions producing thunderstorms with anomalous vertical polarity of charge structure. M.S. thesis, School of Meteorology, University of Oklahoma, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, W. A., I. R. C. A. Pinto, O. Pinto Jr., K. M. Longo, and S. R. Freitas, 2006: New findings about the influence of smoke from fires on the cloud-to-ground lightning characteristics in the Amazon region. Geophys. Res. Lett., 33, L20810, https://doi.org/10.1029/2006GL027744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. , and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172, https://doi.org/10.1175/MWR3231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. Leslie, E. Mansell, J. Straka, D. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 1333, https://doi.org/10.1007/s00703-006-0237-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, https://doi.org/10.1029/2011JD016457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, B. R., and Coauthors, 2015: Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos., 120, 65756596, https://doi.org/10.1002/2015JD023271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. I. Sax, D. Lamb, and A. S. Ramachandra Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651, https://doi.org/10.1002/qj.49710444108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, A., and J. S. Wettlaufer, 2014: Hertz beyond belief. Soft Matter, 10, 22642269, https://doi.org/10.1039/C3SM53063A.

  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 4164, https://doi.org/10.1175/JAS-3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318, https://doi.org/10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2005: An Introduction to Dynamic Meteorology. Academic Press, 552 pp.

  • Hu, J., D. Rosenfeld, A. Ryzhkov, and P. Zhang, 2020: Synergetic use of the WSR-88D radars, GOES-R satellites, and lightning sensors to study microphysical characteristics of hurricanes. J. Appl. Meteor. Climatol., 59, 10511068, https://doi.org/10.1175/JAMC-D-19-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., and C. P. R. Saunders, 1984: The “rain gush”, lightning, and the lower positive charge center in thunderstorms. J. Geophys. Res., 89, 11 81611 818, https://doi.org/10.1029/JD089iD07p11816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482, https://doi.org/10.1002/qj.49709440204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertically velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, https://doi.org/10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 36523677, https://doi.org/10.1175/2008JAS2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946949, https://doi.org/10.1126/science.1159185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, https://doi.org/10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, 2008: Upward electrical discharges from thunderstorms. Nat. Geosci., 1, 233237, https://doi.org/10.1038/ngeo162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J., 1950: The electrical and meteorological conditions inside thunderclouds. J. Meteor., 7, 322332, https://doi.org/10.1175/1520-0469(1950)007<0322:TEAMCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2006: Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett., 33, L03804, https://doi.org/10.1029/2005GL024608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2011: A framework for the statistical analysis of large radar and lightning datasets: Results from STEPS 2000. Mon. Wea. Rev., 139, 25362551, https://doi.org/10.1175/MWR-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study (STEPS). Bull. Amer. Meteor. Soc., 85, 11071126, https://doi.org/10.1175/BAMS-85-8-1107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, B. Dolan, P. Krehbiel, W. Rison, and D. T. Lindsey, 2014: Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Wea. Rev., 142, 489507, https://doi.org/10.1175/MWR-D-13-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., 2018: A numerical investigation of the potential effects of aerosol-induced warming and updraft width and slope on updraft intensity in deep convective clouds. J. Atmos. Sci., 75, 535554, https://doi.org/10.1175/JAS-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., and P. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17, 162171, https://doi.org/10.1109/TGE.1979.294644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D., G. Feng, and S. Wu, 2009: The characteristics of cloud-to-ground lightning activity in hailstorms over northern China. Atmos. Res., 91, 459465, https://doi.org/10.1016/j.atmosres.2008.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., A. Guha, R. Said, E. Williams, J. Lapierre, M. Stock, and S. Heckman, 2020: Aerosol effects on lightning characteristics: A comparison of polluted and clean regimes. Geophys. Res. Lett., 47, e2019GL086825, https://doi.org/10.1029/2019GL086825.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., M. A. LeMone, and E. J. Zipser, 1996: Reply. J. Atmos. Sci., 53, 12121214, https://doi.org/10.1175/1520-0469(1996)053<1212:R>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1980: Clouds and Storms. The Pennsylvania State University Press, 488 pp.

  • Luque, M. Y., R. Burgesser, and E. Ávila, 2016: Thunderstorm graupel charging in the absence of supercooled water droplets. Quart. J. Roy. Meteor. Soc., 142, 24182423, https://doi.org/10.1002/qj.2834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. A. Cramer, and T. R. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 7780, https://doi.org/10.1126/science.282.5386.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, 2009: Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds. J. Geophys. Res., 114, D10204, https://doi.org/10.1029/2008JD011495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, https://doi.org/10.1029/2004JD005287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. R. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, S. J., and T. C. Marshall, 1993: Charged precipitation measurements before the first lightning flash in a thunderstorm. J. Geophys. Res., 98, 16 60516 611, https://doi.org/10.1029/93JD00419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. P. Winn, 1982: Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers. J. Geophys. Res., 87, 71417157, https://doi.org/10.1029/JC087iC09p07141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and S. J. Marsh, 1986: Charged precipitation measurements in thunderstorms. Eos, Trans. Amer. Geophys. Union, 67, 890, https://doi.org/10.1029/EO067i044p00867.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and M. Stolzenburg, 1998: Estimates of cloud charge densities in thunderstorms. J. Geophys. Res., 103, 19 76919 775, https://doi.org/10.1029/98JD01674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679, https://doi.org/10.1175/1520-0450-39.5.666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalon, N., A. Nassif, T. Saouri, J. F. Royer, and C. A. Pontikis, 1999: Contribution to the climatological study of lightning. Geophys. Res. Lett., 26, 30973100, https://doi.org/10.1029/1999GL010837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinié, J., and C. A. Pontikis, 1995: A climatological study of tropical thunderstorm clouds and lightning frequencies on the French Guyana coast. Geophys. Res. Lett., 22, 10851088, https://doi.org/10.1029/95GL01036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, N. D., R. E. Orville, and G. R. Huffines, 2000: Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett., 27, 22492252, https://doi.org/10.1029/2000GL011656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naccarato, K. P., O. Pinto Jr., and I. R. C. A. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of southeastern Brazil. Geophys. Res. Lett., 30, 1674, https://doi.org/10.1029/2003GL017496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochs, H. T., III, 1978: Moment-conserving techniques for warm-cloud microphysics computations. Part II: Model testing and results. J. Atmos. Sci., 35, 19591973, https://doi.org/10.1175/1520-0469(1978)035<1959:MCTFWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653, https://doi.org/10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and J. M. Coyne, 1999: Cloud-to-ground lightning in tropical cyclones (1986–1996). 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 4A.12, https://ams.confex.com/ams/older/99annual/abstracts/1695.htm.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 25972600, https://doi.org/10.1029/2001GL012990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawar, S. D., V. Gopalakrishnan, P. Murugavel, N. E. Veremey, and A. A. Sinkevich, 2017: Possible role of aerosols in the charge structure of isolated thunderstorms. Atmos. Res., 183, 331340, https://doi.org/10.1016/j.atmosres.2016.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and L. J. Donner, 2006: Cloud microphysics, radiation and vertical velocities in two- and three-dimensional simulations of deep convection. Quart. J. Roy. Meteor. Soc., 132, 30113033, https://doi.org/10.1256/qj.05.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. M. Blyth, T. W. Choularton, P. R. A. Brown, and J. Latham, 2001: The glaciation of a cumulus cloud over New Mexico. Quart. J. Roy. Meteor. Soc., 127, 15131534, https://doi.org/10.1002/qj.49712757503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with an explicit microphysics model. I: The impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131, 20192046, https://doi.org/10.1256/qj.04.85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., J.-I. Yano, and A. Khain, 2017a: Ice multiplication by breakup in ice–ice collisions. Part I: Theoretical formulation. J. Atmos. Sci., 74, 17051719, https://doi.org/10.1175/JAS-D-16-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2017b: Ice multiplication by breakup in ice–ice collisions. Part II: Numerical simulations. J. Atmos. Sci., 74, 27892811, https://doi.org/10.1175/JAS-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., S. Patade, J. Gutierrez, and A. Bansemer, 2018: Secondary ice production by fragmentation of freezing of drops: Formulation and theory. J. Atmos. Sci., 75, 30313070, https://doi.org/10.1175/JAS-D-17-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2020: Multiple environmental influences on the lightning of cold-based continental convection. Part I: Description and validation of model. J. Atmos. Sci., 77, 39994024, https://doi.org/10.1175/JAS-D-19-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., 2009: Will a drier climate result in more lightning? Atmos. Res., 91, 479484, https://doi.org/10.1016/j.atmosres.2008.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. J. Schlamp, 1975: A wind tunnel investigation of ice multiplication by freezing of water drops falling at terminal velocity in air. J. Geophys. Res., 80, 380386, https://doi.org/10.1029/JC080i003p00380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rangno, A. L., 2008: Fragmentation of freezing drops in shallow maritime frontal clouds. J. Atmos. Sci., 65, 14551466, https://doi.org/10.1175/2007JAS2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemann-Campe, K., K. Fraedrich, and F. Lunkeit, 2009: Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmos. Res., 93, 534545, https://doi.org/10.1016/j.atmosres.2008.09.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, and Y. Li, 2008: Resonant response of deep convection to surface hotspots. J. Atmos. Sci., 65, 276286, https://doi.org/10.1175/2007JAS2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, D. Gerstle, C. Liu, and D. J. Kirschbaum, 2011: Exploring the land–ocean contrast in convective vigor using islands. J. Atmos. Sci., 68, 602618, https://doi.org/10.1175/2010JAS3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E., J. Weinman, H. Pierce, and W. Olson, 2000: Tropical cyclone lightning distribution and its relationship to convection and intensity change. 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, Amer. Meteor. Soc., 537541.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851854, https://doi.org/10.1126/science.1259100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., A. B. Charn, R. H. Holzworth, W. E. Lawrence, J. Molinari, and D. Vollaro, 2018: CAPE times P explains lightning over land but not the land-ocean contrast. Geophys. Res. Lett., 45, 12 62312 630, https://doi.org/10.1029/2018GL080267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29, 1571, https://doi.org/10.1029/2001GL014303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271, https://doi.org/10.1016/j.atmosres.2004.11.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sànchez, O. D., D. J. Raymond, L. Libersky, and A. G. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci., 46, 22802292, https://doi.org/10.1175/1520-0469(1989)046<2280:TDOTFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sátori, G., P. Ortega, A. Guha, and E. Williams, 2014: Possible relation between the tropical lightning chimneys and the wavenumber-4 structure in the thermosphere/ionosphere. Second TEA–IS Summer School, Collioure, France, European Science Foundation.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, https://doi.org/10.1029/97JD02644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11 00711 017, https://doi.org/10.1029/91JD00970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzenboeck, A., V. Shcherbakov, R. Lefevre, J.-F. Gayet, Y. Pointin, and C. Duroure, 2009: Indications for stellar-crystal fragmentation in Arctic clouds. Atmos. Res., 92, 220228, https://doi.org/10.1016/j.atmosres.2008.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, 398399, https://doi.org/10.1029/2005EO420004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., V. T. J. Phillips, and J. S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33, L05804, https://doi.org/10.1029/2005GL025242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siingh, D., P. Ramesh Kumar, M. N. Kulkarni, R. P. Singh, and A. K. Singh, 2013: Lightning, convective rain and solar activity—Over the South/Southeast Asia. Atmos. Res., 120–121, 99111, https://doi.org/10.1016/j.atmosres.2012.07.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soula, S., S. Chauzy, M. Chong, S. Coquillat, J. F. Georgis, Y. Seity, and P. Tabary, 2003: Surface precipitation electric current produced by convective rains during the Mesoscale Alpine Program. J. Geophys. Res., 108, 4395, https://doi.org/10.1029/2001JD001588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. E. Orville, and G. Huffines, 2002: Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res., 107, 4117, https://doi.org/10.1029/2001JD001142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, M. DeMaria, and J. L. Vigh, 2018: A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change. Wea. Forecasting, 33, 2336, https://doi.org/10.1175/WAF-D-17-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, https://doi.org/10.1002/2014JD023033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, J. R. Pierce, and S. C. van den Heever, 2017: A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology. J. Geophys. Res. Atmos., 122, 74617492, https://doi.org/10.1002/2016JD026220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., and T. C. Marshall, 1998: Charged precipitation and electric field in two thunderstorms. J. Geophys. Res., 103, 19 77719 790, https://doi.org/10.1029/98JD01675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, S., C. Hoose, and A. Nenes, 2017: Investigating the contribution of secondary ice production to in-cloud ice crystal numbers. J. Geophys. Res. Atmos., 122, 93919412, https://doi.org/10.1002/2017JD026546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1977: Production of ice splinters by the freezing of water drops in free fall. J. Meteor. Soc. Japan, 55, 139141, https://doi.org/10.2151/jmsj1965.55.1_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1984: Thunderstorm electrification—A numerical study. J. Atmos. Sci., 41, 25412558, https://doi.org/10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1993: High ice crystal production in winter cumuli over the Japan Sea. Geophys. Res. Lett., 20, 451454, https://doi.org/10.1029/93GL00613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Y. Nagao, and Y. Kushiyama, 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527, https://doi.org/10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., S. Sugimoto, T. Kawano, and K. Suzuki, 2019: Microphysical structure and lightning initiation in Hokuriku winter clouds. J. Geophys. Res. Atmos., 124, 13 15613 181, https://doi.org/10.1029/2018JD030227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmos. Chem. Phys., 16, 799826, https://doi.org/10.5194/acp-16-799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, J. A., K. S. Virts, R. H. Holzworth, and T. P. Mitchell, 2017: Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett., 44, 91029111, https://doi.org/10.1002/2017GL074982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, https://doi.org/10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43, 243249, https://doi.org/10.1007/BF01993560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., 2018: Erroneous attribution of deep convective invigoration to aerosol concentration. J. Atmos. Sci., 75, 13511368, https://doi.org/10.1175/JAS-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180, https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, https://doi.org/10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1963: Some facts and speculation concerning the origin and role of thunderstorm electricity. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 224241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, https://doi.org/10.1029/93JD00872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and R. L. Bras, 1999: Ground heat flux estimated from surface soil temperature. J. Hydrol., 216, 214226, https://doi.org/10.1016/S0022-1694(99)00008-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., Z. Li, J. Guo, C. Zhao, and M. Cribb, 2018: The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys., 18, 12 79712 816, https://doi.org/10.5194/acp-18-12797-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major midwestern urban areas. J. Appl. Meteor., 34, 16331642, https://doi.org/10.1175/1520-0450-34.7.1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, https://doi.org/10.1029/JD094iD11p13151.

  • Williams, E. R., 1995: Meteorological aspects of thunderstorms. Handbook of Atmospheric Electrodynamics, H. Volland, Ed., CRC Press, 2760.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527561.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. C. R. Phys., 3, 12771292, https://doi.org/10.1016/S1631-0705(02)01407-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and G. Satori, 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol.-Terr. Phys., 66, 12131231, https://doi.org/10.1016/j.jastp.2004.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. G. Geotis, N. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395, https://doi.org/10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., K. Rothkin, D. Stevenson, and D. J. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39, 22232230, https://doi.org/10.1175/1520-0450(2001)040<2223:GLVCBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, https://doi.org/10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, https://doi.org/10.1029/2003JD003833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306, https://doi.org/10.1016/j.atmosres.2004.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winn, W. P., and L. G. Byerley, 1975: Electric field growth in thunderclouds. Quart. J. Roy. Meteor. Soc., 101, 979994, https://doi.org/10.1002/qj.49710143017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and V. T. J. Phillips, 2011: Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333, https://doi.org/10.1175/2010JAS3607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, https://doi.org/10.1029/2010GL046052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, D., D. Wang, Y. Zhang, T. Wu, and N. Takagi, 2019: Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos., 124, 71797206, https://doi.org/10.1029/2018JD030060.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells—A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 27 27 27
Full Text Views 7 7 7
PDF Downloads 8 8 8

Multiple Environmental Influences on the Lightning of Cold-Based Continental Convection. Part II: Sensitivity Tests for Its Charge Structure and Land–Ocean Contrast

View More View Less
  • 1 aDepartment of Physical Geography, University of Lund, Lund, Sweden
Restricted access

Abstract

In Part I, an electrification scheme was described and a simulation of an observed cold-based storm from the U.S. Great Plains was validated with electrical observations. Most charge in the storm was separated by rebounding collisions of secondary ice originating from prior graupel–snow collisions. In this Part II, sensitivity tests are performed with the control simulation (Part I) and influences from environmental factors (aerosols, temperature, moisture, and shear) on lightning are elucidated. Environmental factors [e.g., convective available potential energy (CAPE)] controlling updraft speed are salient. When ascent is reduced by 30% and 70%, flashes become 70% fewer and disappear, respectively; faster ascent promotes positive cloud-to-ground (+CGs) flashes. Since cloud base is too cold (1°C) for coalescence, cloud condensation nucleus aerosol concentrations do not influence the lightning appreciably. The electrical response to varying concentrations of active ice nuclei is limited by most ice particles being secondary and less sensitive—a natural “buffer.” Imposing a maritime sounding suggests that the land–sea contrast in lightning for such storms is due to the vertical structure of environmental temperature and humidity. Weak CAPE, and both entrainment and condensate weight from a low cloud base, suppress ascent and charging. Maritime thermodynamic conditions reduce simulated flash rates by two orders of magnitude. Reducing aerosol loadings from continental to maritime only slightly reinforces this suppression. Last, a conceptual model is provided for how any simulated storm is either normal because graupel/hail is mostly positively charged or else is inverted/anomalous because graupel/hail is mostly negatively charged, with environmental factors controlling the charging. Impacts from microphysical processes, including three processes of secondary ice production, on lightning are analyzed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se

Abstract

In Part I, an electrification scheme was described and a simulation of an observed cold-based storm from the U.S. Great Plains was validated with electrical observations. Most charge in the storm was separated by rebounding collisions of secondary ice originating from prior graupel–snow collisions. In this Part II, sensitivity tests are performed with the control simulation (Part I) and influences from environmental factors (aerosols, temperature, moisture, and shear) on lightning are elucidated. Environmental factors [e.g., convective available potential energy (CAPE)] controlling updraft speed are salient. When ascent is reduced by 30% and 70%, flashes become 70% fewer and disappear, respectively; faster ascent promotes positive cloud-to-ground (+CGs) flashes. Since cloud base is too cold (1°C) for coalescence, cloud condensation nucleus aerosol concentrations do not influence the lightning appreciably. The electrical response to varying concentrations of active ice nuclei is limited by most ice particles being secondary and less sensitive—a natural “buffer.” Imposing a maritime sounding suggests that the land–sea contrast in lightning for such storms is due to the vertical structure of environmental temperature and humidity. Weak CAPE, and both entrainment and condensate weight from a low cloud base, suppress ascent and charging. Maritime thermodynamic conditions reduce simulated flash rates by two orders of magnitude. Reducing aerosol loadings from continental to maritime only slightly reinforces this suppression. Last, a conceptual model is provided for how any simulated storm is either normal because graupel/hail is mostly positively charged or else is inverted/anomalous because graupel/hail is mostly negatively charged, with environmental factors controlling the charging. Impacts from microphysical processes, including three processes of secondary ice production, on lightning are analyzed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se

Supplementary Materials

    • Supplemental Materials (PDF 358 KB)
Save