• Auer, A. H., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., B. D. Swanson, M. B. Baker, and E. J. Davis, 1998: Breakup of levitated frost particles. J. Geophys. Res., 103, 13 76313 775, https://doi.org/10.1029/98JD01162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. Atmos. Res., 28, 125152, https://doi.org/10.1016/0169-8095(92)90024-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, https://doi.org/10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., and H. P. Palmer, 1949: Condensation processes at low temperatures, and the production of new sublimation nuclei by the splintering of ice. Nature, 164, 312313, https://doi.org/10.1038/164312a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y. Y., and J. Hallett, 1989: Droplet accretion during rime growth and the formation of secondary ice crystals. Quart. J. Roy. Meteor. Soc., 115, 127142, https://doi.org/10.1002/qj.49711548507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y. Y., R. G. Oraltay, and J. Hallett, 1994: Ice particle generation during evaporation. Atmos. Res., 32, 4553, https://doi.org/10.1016/0169-8095(94)90050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436, https://doi.org/10.1175/2010JAS3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., Z. Levin, and S. Tzivion, 1991: The evolution of raindrop spectra. Part III: Downdraft generation in an axisymmetrical rainshaft model. J. Atmos. Sci., 48, 315330, https://doi.org/10.1175/1520-0469(1991)048<0315:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, https://doi.org/10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2017: Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20 May squall line case. Atmos. Chem. Phys., 17, 59475972, https://doi.org/10.5194/acp-17-5947-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S. I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, D., and T. Choularton, 1986: A laboratory study of secondary ice particle production by the fragmentation of rime and vapour-grown ice crystals. Quart. J. Roy. Meteor. Soc., 112, 149163, https://doi.org/10.1002/qj.49711247109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: Survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 19952006, https://doi.org/10.1175/1520-0469(1976)033<1995:TSOIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. I. Sax, D. Lamb, and A. S. R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651, https://doi.org/10.1002/qj.49710444108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harimaya, T., 1975: The riming properties of snow crystals. J. Meteor. Soc. Japan, 53, 384392, https://doi.org/10.2151/jmsj1965.53.6_384.

  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, https://doi.org/10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 4164, https://doi.org/10.1175/JAS-3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318, https://doi.org/10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881888, https://doi.org/10.1175/1520-0469(1968)025<0881:TFOFWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232549, https://doi.org/10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, https://doi.org/10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., M. K. Politovich, and L. F. Radke, 1980: The structures of summer convective clouds in eastern Montana I: Natural clouds. J. Appl. Meteor., 19, 645663, https://doi.org/10.1175/1520-0450(1980)019<0645:TSOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1957: Experimental researches on the snow crystal habit and growth by means of a diffusion cloud chamber. J. Meteor. Soc. Japan, 35A, 3847, https://doi.org/10.2151/jmsj1923.35A.0_38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1961: The growth of snow crystals at low supersaturations. Philos. Mag., 6, 13631370, https://doi.org/10.1080/14786436108241231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, https://doi.org/10.1002/qj.49712656913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds. J. Atmos. Sci., 62, 16781693, https://doi.org/10.1175/JAS3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1985: Secondary ice particle production during rime growth: The effect of drop size distribution and rimer velocity. Quart. J. Roy. Meteor. Soc., 111, 11131124, https://doi.org/10.1002/qj.49711147012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, J., 1998: Sublimation of ice crystals. J. Atmos. Sci., 55, 910919, https://doi.org/10.1175/1520-0469(1998)055<0910:SOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 1989: Evaporation and melting of ice crystals: A laboratory study. Atmos. Res., 24, 169189, https://doi.org/10.1016/0169-8095(89)90044-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2017: Ice multiplication by breakup in ice–ice collisions. Part II: Numerical simulations. J. Atmos. Sci., 74, 27892811, https://doi.org/10.1175/JAS-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rango, A., J. Foster, E. G. Josberger, E. F. Erbe, C. Pooley, and W. P. Wergin, 2003: Rime and graupel: Description and characterization as revealed by low-temperature scanning electron microscopy. Scanning, 25, 121131, https://doi.org/10.1002/sca.4950250304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42, 22752279, https://doi.org/10.1175/1520-0469(1985)042<2275:AGFFIV<2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 290 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., E. R. Wishart, and D. E. Shaw, 1976: The growth rates and densities of ice crystals between −3°C and −21°C. J. Atmos. Sci., 33, 842850, https://doi.org/10.1175/1520-0469(1976)033<0842:TGRADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., and R. J. Cheng, 1971: The production of ice crystal fragments by sublimation and electrification. J. Rech. Atmos., 5, 510.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, https://doi.org/10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1974: The generation of secondary ice particles in clouds by crystal-crystal collision. Ph.D. thesis, Dept. of Atmospheric Science, Colorado State University, 136 pp.

  • Yano, J. I., and V. T. J. Phillips, 2011: Ice–ice collisions: An ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333, https://doi.org/10.1175/2010JAS3607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J. I., and V. T. J. Phillips, 2016: Explosive ice multiplication induced by multiplicative-noise fluctuation of mechanical breakup in ice–ice collisions. J. Atmos. Sci., 73, 46854697, https://doi.org/10.1175/JAS-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 26 26 26
Full Text Views 6 6 6
PDF Downloads 7 7 7

New Empirical Formulation for the Sublimational Breakup of Graupel and Dendritic Snow

View More View Less
  • 1 aDepartment of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
  • | 2 bEarth System Laboratory, National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Ice fragments are generated by sublimation of ice particles in subsaturated conditions in natural clouds. Conceivably, such sublimational breakup would be expected to cause ice multiplication in natural clouds. Any fragment that survives will grow to become ice precipitation that may sublimate and fragment further. As a first step toward assessing this overlooked process, a formulation is proposed for the number of ice fragments from sublimation of ice particles for an atmospheric model. This is done by amalgamating laboratory observations from previously published studies. The concept of a “sublimated mass activity spectrum” for the breakup is applied to the dataset. The number of ice fragments is determined by the relative humidity over ice and the initial size of the parent ice particles. The new formulation applies to dendritic crystals and heavily rimed particles only. Finally, a thought experiment is performed for an idealized scenario of subsaturation with in-cloud descent. Scaling analysis yields an estimate of an ice enhancement ratio of about 5 (10) within a weak deep convective downdraft of about 2 m s−1, for an initial monodisperse population of dendritic snow (graupel) particles of 3 L−1 and 2 mm. During descent, there is a dynamic equilibrium between continual emission of fragments and their depletion by sublimation. A simplified bin microphysics parcel model exhibits this dynamical quasi equilibrium, consistent with the thought experiment. The fragments have average lifetimes of around 90 and 70 s for dendrites and graupel, respectively. Sublimational breakup is predicted to cause significant secondary ice production.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Akash Deshmukh, akash.deshmukh@nateko.lu.se

Abstract

Ice fragments are generated by sublimation of ice particles in subsaturated conditions in natural clouds. Conceivably, such sublimational breakup would be expected to cause ice multiplication in natural clouds. Any fragment that survives will grow to become ice precipitation that may sublimate and fragment further. As a first step toward assessing this overlooked process, a formulation is proposed for the number of ice fragments from sublimation of ice particles for an atmospheric model. This is done by amalgamating laboratory observations from previously published studies. The concept of a “sublimated mass activity spectrum” for the breakup is applied to the dataset. The number of ice fragments is determined by the relative humidity over ice and the initial size of the parent ice particles. The new formulation applies to dendritic crystals and heavily rimed particles only. Finally, a thought experiment is performed for an idealized scenario of subsaturation with in-cloud descent. Scaling analysis yields an estimate of an ice enhancement ratio of about 5 (10) within a weak deep convective downdraft of about 2 m s−1, for an initial monodisperse population of dendritic snow (graupel) particles of 3 L−1 and 2 mm. During descent, there is a dynamic equilibrium between continual emission of fragments and their depletion by sublimation. A simplified bin microphysics parcel model exhibits this dynamical quasi equilibrium, consistent with the thought experiment. The fragments have average lifetimes of around 90 and 70 s for dendrites and graupel, respectively. Sublimational breakup is predicted to cause significant secondary ice production.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Akash Deshmukh, akash.deshmukh@nateko.lu.se
Save