• Abdella, K., and N. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci., 54, 18501867, https://doi.org/10.1175/1520-0469(1997)054<1850:ANSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adrian, R. J., R. T. D. S. Ferreira, and T. Boberg, 1986: Turbulent thermal convection in wide horizontal fluid layers. Exp. Fluids, 4, 121141, https://doi.org/10.1007/BF00280263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., J. Fruntke, and R. Engelmann, 2010: Updraft and downdraft characterization with Doppler lidar: Cloud-free versus cumuli-topped mixed layer. Atmos. Chem. Phys., 10, 78457858, https://doi.org/10.5194/acp-10-7845-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., 1996: Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, 386 pp.

  • Bernard-Trottolo, S., B. Campistron, A. Druilhet, F. Lohou, and F. Saïd, 2004: TRAC98: Detection of coherent structures in a convective boundary layer using airborne measurements. Bound.-Layer Meteor., 111, 181224, https://doi.org/10.1023/B:BOUN.0000016465.50697.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, E., 1914: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev., 4, 345376, https://doi.org/10.1103/PhysRev.4.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catalano, F., M. Moroni, V. Dore, and A. Cenedese, 2012: An alternative scaling for unsteady penetrative free-convection. J. Geophys. Res., 117, D18102, https://doi.org/10.1029/2012JD018229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811827, https://doi.org/10.1002/qj.49710544606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, A., and G. Querzoli, 1994: A laboratory model of turbulent convection in the atmospheric boundary layer. Atmos. Environ., 28, 19011913, https://doi.org/10.1016/1352-2310(94)90330-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., C. Rio, F. Guichard, M. Lothon, G. Canut, D. Bouniol, and A. Gounou, 2012: Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations. Quart. J. Roy. Meteor. Soc., 138, 5671, https://doi.org/10.1002/qj.903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and A. A. M. Holtslag, 1998: Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. J. Atmos. Sci., 55, 151162, https://doi.org/10.1175/1520-0469(1998)055<0151:IOSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., and G. E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32, 205236, https://doi.org/10.1007/BF00121880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degrazia, G. A., D. M. Moreira, and M. T. Vilhena, 2001: Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a convective boundary layer. J. Appl. Meteor., 40, 12331240, https://doi.org/10.1175/1520-0450(2001)040<1233:DOAEDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degrazia, G. A., and Coauthors, 2015: Eddy diffusivities for the convective boundary layer derived from LES spectral data. Atmos. Pollut. Res., 6, 605611, https://doi.org/10.5094/APR.2015.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druilhet, A., J. P. Frangi, D. Guedalia, and J. Fontan, 1983: Experimental studies of the turbulence structure parameters of the convective boundary layer. J. Climate Appl. Meteor., 22, 594608, https://doi.org/10.1175/1520-0450(1983)022<0594:ESOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, T. M., J. F. Barlow, and S. E. Belcher, 2014: An optimal inverse method using Doppler lidar measurements to estimate the surface sensible heat flux. Bound.-Layer Meteor., 150, 4967, https://doi.org/10.1007/s10546-013-9858-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fage, A., and V. M. Falkner, 1932: Note on experiments on the temperature and velocity in the wake of a heated cylindrical obstacle. Proc. Roy. Soc. London, 135A, 702705, https://doi.org/10.1098/rspa.1932.0062.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenhut, G. K., and G. Mastrantonio, 1989: Turbulence kinetic energy budget profiles derived from Doppler sodar measurements. J. Appl. Meteor., 28, 99106, https://doi.org/10.1175/1520-0450(1989)028<0099:TKEBPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryanik, V. M., and J. Hartmann, 2002: A turbulence closure for the convective boundary layer based on a two-scale mass-flux approach. J. Atmos. Sci., 59, 27292744, https://doi.org/10.1175/1520-0469(2002)059<2729:ATCFTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, B., S. , and Y. Ao, 2012: Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177192, https://doi.org/10.1007/s00376-011-0207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1968: A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum. J. Atmos. Sci., 25, 10261033, https://doi.org/10.1175/1520-0469(1968)025<1026:AMOEVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1982: Applications in air pollution modeling. Atmospheric Turbulence and Air Pollution Modelling, Springer, 275310.

  • Hibberd, M. F., and B. L. Sawford, 1994: A saline laboratory model of the planetary convective boundary layer. Bound.-Layer Meteor., 67, 229250, https://doi.org/10.1007/BF00713143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence. McGraw-Hill Book Company, 488 pp.

  • Hogstrom, U., 1985: Von Kármán’s constant in atmospheric boundary layer flow: Reevaluated. J. Atmos. Sci., 42, 263270, https://doi.org/10.1175/1520-0469(1985)042<0263:VKCIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, T., and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761780, https://doi.org/10.1029/RG026i004p00761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., J. C. Kaimal, and J. E. Gaynor, 1988: Eddy structure in the convective boundary layer—New measurements and new concepts. Quart. J. Roy. Meteor. Soc., 114, 827858, 10.1002/QJ.49711448202.

    • Search Google Scholar
    • Export Citation
  • Hurley, P., 2007: Modelling mean and turbulence fields in the dry convective boundary layer with the eddy-diffusivity/mass-flux approach. Bound.-Layer Meteor., 125, 525536, https://doi.org/10.1007/s10546-007-9203-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637662, https://doi.org/10.1017/S0022112090002129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn, and J. A. Businger, 1982: Spectral characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci., 39, 10981114, https://doi.org/10.1175/1520-0469(1982)039<1098:SCOTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, R., and E. Fedorovich, 1998: Turbulence spectra and dissipation rates in a wind tunnel model of the atmospheric convective boundary layer. J. Atmos. Sci., 55, 580594, https://doi.org/10.1175/1520-0469(1998)055<0580:TSADRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2013: Corrigendum. Meteor. Z., 22, 787788, https://doi.org/10.1127/0941-2948/2013/0556.

  • Kang, S. L., K. J. Davis, and M. LeMone, 2007: Observations of the ABL structures over a heterogeneous land surface during IHOP_2002. J. Hydrometeor., 8, 221244, https://doi.org/10.1175/JHM567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941a: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941b: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1618.

  • Kristensen, L., D. H. Lenschow, D. Gurarie, and N. O. Jensen, 2010: Erratum to a simple model for the vertical transport of reactive species in the convective atmospheric boundary layer. Bound.-Layer Meteor., 135, 181183, 10.1007/s10546-010-9473-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., 1996: Turbulence spectra and eddy diffusivity over forests. J. Appl. Meteor., 35, 13071318, https://doi.org/10.1175/1520-0450(1996)035<1307:TSAEDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor., 19, 509532, https://doi.org/10.1007/BF00122351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., M. Lothon, S. D. Mayor, P. P. Sullivan, and G. Canut, 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123, https://doi.org/10.1007/s10546-011-9615-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohou, F., B. Campistron, A. Druilhet, P. Foster, and J. P. Pages, 1998: Turbulence and coherent organizations in the atmospheric boundary layer: A radar-aircraft experimental approach. Bound.-Layer Meteor., 86, 147179, https://doi.org/10.1023/A:1000613232592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2009: Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Bound.-Layer Meteor., 132, 205226, https://doi.org/10.1007/s10546-009-9398-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, A. K., M. F. Hibberd, and P. J. Hurley, 1996: Comparison of closure schemes used to specify the velocity PDF in Lagrangian stochastic dispersion models for convective conditions. Atmos. Environ., 30, 14071418, https://doi.org/10.1016/1352-2310(95)00464-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2003: Formulation of turbulent fluxes in the stable boundary layer. J. Atmos. Sci., 60, 25382548, https://doi.org/10.1175/1520-0469(2003)060<2538:FOTFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, V., N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner, 2016: Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain. Atmos. Chem. Phys., 16, 13771400, https://doi.org/10.5194/acp-16-1377-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurizi, A., 2006: On the dependence of third- and fourth-order moments on stability in the turbulent boundary layer. Nonlinear Processes Geophys., 13, 119123, https://doi.org/10.5194/npg-13-119-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNicholas, C., and D. D. Turner, 2014: Characterizing the convective boundary layer turbulence with a high spectral resolution lidar. J. Geophys. Res. Atmos., 119, 12 910–12 927, https://doi.org/10.1002/2014JD021867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Q., B. Geerts, and M. LeMone, 2006: Vertical velocity and buoyancy characteristics of coherent echo plumes in the convective boundary layer, detected by a profiling airborne radar. J. Appl. Meteor. Climatol., 45, 838855, https://doi.org/10.1175/JAM2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1. MIT Press, 769 pp.

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in the thermally inhomogeneous atmosphere. Akad. Nauk SSSR Tr. Inst. Theor. Geofiz., 1, 95115.

  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, A., S.-E. E. Gryning, J. Mann, and C. B. Hasager, 2010: Length scales of the neutral wind profile over homogeneous terrain. J. Appl. Meteor. Climatol., 49, 792806, https://doi.org/10.1175/2009JAMC2148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1932: Meteorogische anwendung der stromungslehre. Beitr. Phys. Atmos., 19, 188202.

  • Priestley, C. H. B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, 130 pp.

  • Saïd, F., G. Canut, P. Durand, F. Lohou, and M. Lothon, 2010: Seasonal evolution of boundary-layer turbulence measured by aircraft during the AMMA 2006 special observation period. Quart. J. Roy. Meteor. Soc., 136 (Suppl. 1), 4765, https://doi.org/10.1002/qj.475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., S.-Y. Hong, Y. Noh, and J. Dudhia, 2013: Derivation of turbulent kinetic energy from a first-order nonlocal planetary boundary layer parameterization. J. Atmos. Sci., 70, 17951805, https://doi.org/10.1175/JAS-D-12-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-H., and K.-J. Ha, 2007: Effects of spatial and temporal variations in PBL depth on a GCM. J. Climate, 20, 47174732, https://doi.org/10.1175/JCLI4274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1986: On similarity in the atmospheric boundary layer. Bound.-Layer Meteor., 34, 377397, https://doi.org/10.1007/BF00120989.

  • Sorbjan, Z., 1988: Local similarity in the convective boundary layer (CBL). Bound.-Layer Meteor., 45, 237250, https://doi.org/10.1007/BF01066672.

  • Sorbjan, Z., 1989: Local similarity functions derived from second-moment budgets in the convective boundary layer. Bound.-Layer Meteor., 46, 111, https://doi.org/10.1007/BF00118443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1990: Similarity scales and universal profiles of statistical moments in the convective boundary layer. J. Appl. Meteor., 29, 762775, https://doi.org/10.1175/1520-0450(1990)029<0762:SSAUPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1991: Evaluation of local similarity functions in the convective boundary layer. J. Appl. Meteor., 30, 15651583, https://doi.org/10.1175/1520-0450(1991)030<1565:EOLSFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1996a: Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. J. Atmos. Sci., 53, 20152024, https://doi.org/10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1996b: Numerical study of penetrative and “solid lid” nonpenetrative convective boundary layers. J. Atmos. Sci., 53, 101112, https://doi.org/10.1175/1520-0469(1996)053<0101:NSOPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1999: Similarity of scalar fields in the convective boundary layer. J. Atmos. Sci., 56, 22122221, https://doi.org/10.1175/1520-0469(1999)056<2212:SOSFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1932: The transport of vorticity and heat through fluids in turbulent motion. Proc. Roy. Soc. London, 135A, 685702, https://doi.org/10.1098/rspa.1932.0061.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and S. Cheinet, 2004: A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection. Bound.-Layer Meteor., 110, 435453, https://doi.org/10.1023/B:BOUN.0000007230.96303.0d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • van Dop, H., D. van As, A. van Herwijnen, M. F. Hibberd, and H. Jonker, 2005: Length scales of scalar diffusion in the convective boundary layer: Laboratory observations. Bound.-Layer Meteor., 116, 135, https://doi.org/10.1007/s10546-004-2165-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulfson, A. N., and O. O. Borodin, 2009: An ensemble of dynamically identical thermals and vertical profiles of turbulent moments in the convective surface layer of atmosphere. Russ. Meteor. Hydrol., 34, 491500, https://doi.org/10.3103/S1068373909080020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulfson, A. N., and O. O. Borodin, 2016: System of convective thermals as a generalized ensemble of Brownian particles. Phys. Usp., 59, 109120, https://doi.org/10.3367/UFNe.0186.201602a.0113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulfson, A. N., and O. O. Borodin, 2018: Brownian ensemble of random-radius buoyancy vortices and Maxwell velocity distribution in a turbulent convective mixed-layer. Phys. Fluids, 30, 095103, https://doi.org/10.1063/1.5042676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulfson, A. N., I. A. Volodin, and O. O. Borodin, 2004: Local theory of similarity and universal profiles of turbulent characteristics of a convective boundary layer. Meteor. Gidrol., 10, 515.

    • Search Google Scholar
    • Export Citation
  • Vulfson, N. I., 1964: Convective Motions in a Free Atmosphere. Israel Program for Scientific Translations, 188 pp.

  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 12971307, https://doi.org/10.1175/1520-0469(1974)031<1297:ALMOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witek, M. L., J. Teixeira, and G. Matheou, 2011: An integrated TKE-based eddy diffusivity/mass flux boundary layer closure for the dry convective boundary layer. J. Atmos. Sci., 68, 15261540, https://doi.org/10.1175/2011JAS3548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittwer, A. R., G. S. Welter, and A. M. Loredo-Souza, 2013: Statistical analysis of wind tunnel and atmospheric boundary layer turbulent flows. Wind Tunnel Designs and Their Diverse Engineering Applications, InTech, 197 pp.

    • Search Google Scholar
    • Export Citation
  • Wood, C. R., and Coauthors, 2010: Turbulent flow at 190 m height above London during 2006–2008: A climatology and the applicability of similarity theory. Bound.-Layer Meteor., 137, 7796, https://doi.org/10.1007/s10546-010-9516-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1987: A physical mechanism for the asymmetry in top-down and bottom-up diffusion. J. Atmos. Sci., 44, 10831087, https://doi.org/10.1175/1520-0469(1987)044<1083:APMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free-convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 11711182, https://doi.org/10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeman, O., and J. L. Lumley, 1976: Modeling buoyancy driven mixed layers. J. Atmos. Sci., 33, 19741988, https://doi.org/10.1175/1520-0469(1976)033<1974:MBDML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1994: A generalized scaling for convective shear flows. Bound.-Layer Meteor., 70, 5178, https://doi.org/10.1007/BF00712523.

  • Zilitinkevich, S., V. M. Gryanik, V. N. Lykossov, and D. V. Mironov, 1999: Third-order transport and nonlocal turbulence closures for convective boundary layers. J. Atmos. Sci., 56, 34633477, https://doi.org/10.1175/1520-0469(1999)056<3463:TOTANT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 29 29 29
Full Text Views 1 1 1
PDF Downloads 2 2 2

Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity

View More View Less
  • 1 aWater Problems Institute, Russian Academy of Sciences, Moscow, Russia
  • | 2 bNational Research University Higher School of Economics, Moscow, Russia
  • | 3 cNational University of Science and Technology MISIS, Moscow, Russia
Restricted access

Abstract

Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Vulfson, vulfson@iwp.ru

Abstract

Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Vulfson, vulfson@iwp.ru
Save