• Bister, M., and K. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2017: The governing equations for CM1. UCAR Tech. Note, 24 pp., https://www2.mmm.ucar.edu/people/bryan/cm1/cm1_equations.pdf.

  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and A. A. Wing, 2017: Clouds, circulation, and climate sensitivity in a radiative-convective equilibrium channel model. J. Adv. Model. Earth Syst., 9, 28832905, https://doi.org/10.1002/2017MS001111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and D. R. Chavas, 2019: Dry and semidry tropical cyclones. J. Atmos. Sci., 76, 21932212, https://doi.org/10.1175/JAS-D-18-0357.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godson, W. L., 1948: A new tendency equation and its application to the analysis of surface pressure changes. J. Meteor., 5, 227235, https://doi.org/10.1175/1520-0469(1948)005<0227:ANTEAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., 1995: An examination of pressure tendency mechanisms in an idealized simulation of extratropical cyclogenesis. Tellus, 47A, 747758, https://doi.org/10.3402/tellusa.v47i5.11572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., Y. Ishikawa, and Y. Miyamoto, 2011: Short-time-scale processes in a mature hurricane as a response to sea surface fluctuations. J. Atmos. Sci., 68, 22502272, https://doi.org/10.1175/JAS-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, https://doi.org/10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., R. Rotunno, and Q. Wang, 2020: Frictionally induced feedback in a reduced dynamical model of tropical cyclone intensification. J. Atmos. Sci., 77, 38213831, https://doi.org/10.1175/JAS-D-20-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and A. H. Fink, 2008: Dry-season precipitation in tropical West Africa and its relation to forcing from the extratropics. Mon. Wea. Rev., 136, 35793596, https://doi.org/10.1175/2008MWR2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., A. H. Fink, and S. Pohle, 2009: Reply. Mon. Wea. Rev., 137, 31513157, https://doi.org/10.1175/2009MWR3006.1.

  • Kong, K.-Y., 2006: Understanding the genesis of Hurricane Vince through the surface pressure tendency equation. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 9B.4, http://ams.confex.com/ams/pdfpapers/108938.pdf.

  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pum, 2005: The interaction of Supertyphoon Maemi with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2018: Examining the contribution of surface sensible heat flux induced sensible heating to tropical cyclone intensification from the balance dynamics theory. Dyn. Atmos. Oceans, 84, 3345, https://doi.org/10.1016/j.dynatmoce.2018.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2020: A study of the interaction between Typhoon Francisco (2013) and a cold core eddy. Part I: Rapid weakening. J. Atmos. Sci., 77, 355377, https://doi.org/10.1175/JAS-D-18-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2013: The effects of ocean feedback on tropical cyclone energetics under idealized air-sea interaction conditions. J. Geophys. Res. Atmos., 118, 97789788, https://doi.org/10.1002/jgrd.50780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2015a: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120140, https://doi.org/10.1175/JAS-D-14-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Cheng, Y. Wang, and X. Huang, 2015b: Contributions of surface sensible heat fluxes to tropical cyclone. Part II: The sea spray processes. J. Atmos. Sci., 72, 42184236, https://doi.org/10.1175/JAS-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricane. Tellus, 12, 120, https://doi.org/10.3402/tellusa.v12i1.9351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. Nicholls, T. A. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., N. V. Sang, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, https://doi.org/10.1002/qj.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, https://doi.org/10.1002/2014MS000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrowiec, A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619, https://doi.org/10.1175/2011JAS3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murthy, V. S., and W. R. Boos, 2018: Role of surface enthalpy fluxes in idealized simulations of tropical depression spinup. J. Atmos. Sci., 75, 18111831, https://doi.org/10.1175/JAS-D-17-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1944: The effect of vertical motion on local temperature and pressure tendencies. Bull. Amer. Meteor. Soc., 25, 271275, https://doi.org/10.1175/1520-0477-25.7.271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, https://doi.org/10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276287, https://doi.org/10.1175/1520-0469(1963)020<0276:SRBWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spengler, T., and J. Egger, 2009: Comments on “Dry-season precipitation in tropical West Africa and its relation to forcing from the extratropics.” Mon. Wea. Rev., 137, 31493150, https://doi.org/10.1175/2009MWR2942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and J. R. Holton, 1993: On the interpretation of geopotential height tendency equations. Mon. Wea. Rev., 121, 26422645, https://doi.org/10.1175/1520-0493(1993)121<2642:OTIOGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Y. Lin, 2020: Size and structure of dry and moist reversible tropical cyclones. J. Atmos. Sci., 77, 20912114, https://doi.org/10.1175/JAS-D-19-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Ma, and N. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 13171341, https://doi.org/10.1175/JAS-D-12-017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389, https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L14813, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 20112019, https://doi.org/10.1175/JAS-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Rogers, D. Nolan, and F. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 26 26 26
Full Text Views 7 7 7
PDF Downloads 11 11 11

A Comparison between Moist and Dry Tropical Cyclones: The Low Effectiveness of Surface Sensible Heat Flux in Storm Intensification

View More View Less
  • 1 aCollege of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
Restricted access

Abstract

Recent numerical modeling studies demonstrate that dry tropical cyclones can be stably sustained via a supply of surface sensible heat flux. This raises questions of whether surface sensible heat flux (SHX) and latent heat flux (LHX) have the same effect on the intensity evolution of tropical cyclones. An estimation of equivalent potential temperature budget in the boundary layer shows that LHX leads to larger increase in equivalent potential temperature than SHX even when they possess the same magnitude. By formulating these two kinds of surface heat fluxes with the same mathematical framework, the simulated intensifications of moist and dry tropical cyclones are compared, with the former driven exclusively by LHX and the latter by SHX. Results show significantly larger intensification rates for the tropical cyclone driven by LHX than that by SHX, revealing low effectiveness of SHX in the intensification of tropical cyclones. The diabatic heating in the moist tropical cyclone occurs accompanying the convection, while it is merely pronounced near the surface in the dry tropical cyclone and is decoupled from the dry convection. A new surface pressure tendency equation is proposed, without incorporating the implicit pressure tendency term on the right-hand side. The budget analysis indicates that the SHX is less effective than LHX in lowering surface central pressure and therefore in tropical cyclone intensification. A series of sensitivity experiments suggest that the threshold of energy input required for spinning up a tropical cyclone is lower in the form of LHX than that of SHX.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhanhong Ma, mazhanhong17@nudt.edu.cn

Abstract

Recent numerical modeling studies demonstrate that dry tropical cyclones can be stably sustained via a supply of surface sensible heat flux. This raises questions of whether surface sensible heat flux (SHX) and latent heat flux (LHX) have the same effect on the intensity evolution of tropical cyclones. An estimation of equivalent potential temperature budget in the boundary layer shows that LHX leads to larger increase in equivalent potential temperature than SHX even when they possess the same magnitude. By formulating these two kinds of surface heat fluxes with the same mathematical framework, the simulated intensifications of moist and dry tropical cyclones are compared, with the former driven exclusively by LHX and the latter by SHX. Results show significantly larger intensification rates for the tropical cyclone driven by LHX than that by SHX, revealing low effectiveness of SHX in the intensification of tropical cyclones. The diabatic heating in the moist tropical cyclone occurs accompanying the convection, while it is merely pronounced near the surface in the dry tropical cyclone and is decoupled from the dry convection. A new surface pressure tendency equation is proposed, without incorporating the implicit pressure tendency term on the right-hand side. The budget analysis indicates that the SHX is less effective than LHX in lowering surface central pressure and therefore in tropical cyclone intensification. A series of sensitivity experiments suggest that the threshold of energy input required for spinning up a tropical cyclone is lower in the form of LHX than that of SHX.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhanhong Ma, mazhanhong17@nudt.edu.cn
Save