• André, J., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, https://doi.org/10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armenio, V., and S. Sarkar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 142, https://doi.org/10.1017/S0022112002007851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atoufi, A., K. A. Scott, and M. L. Waite, 2020: Characteristics of quasistationary near-wall turbulence subjected to strong stable stratification in open-channel flows. Phys. Rev. Fluids, 5, 064603, https://doi.org/10.1103/PhysRevFluids.5.064603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 2011: Physical and Dynamical Meteorology. Cambridge University Press, 454 pp.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantwell, C., and Coauthors, 2015: Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun., 192, 205219, https://doi.org/10.1016/j.cpc.2015.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, G. N., J. Ferziger, and P. Spalart, 1990: A numerical study of the turbulent Ekman layer. J. Fluid Mech., 213, 313348, https://doi.org/10.1017/S0022112090002348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., G. Brethouwer, P. Schlatter, and E. Lindborg, 2014: A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech., 755, 672704, https://doi.org/10.1017/jfm.2014.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and A. Shapiro, 2009: Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys., 57, 9811010, https://doi.org/10.2478/s11600-009-0027-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci., 74, 28132834, https://doi.org/10.1175/JAS-D-17-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H., and J. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, https://doi.org/10.1175/2010BAMS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, O., and J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259, https://doi.org/10.1007/s10546-011-9588-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K., and W. Reid, 1968: The stability of thermally stratified plane Poiseuille flow. J. Fluid Mech., 33, 2132, https://doi.org/10.1017/S0022112068002326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Villalba, M., and J. C. del Alamo, 2011: Turbulence modification by stable stratification in channel flow. Phys. Fluids, 23, 045104, https://doi.org/10.1063/1.3560359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohari, S. M. I., and S. Sarkar, 2018: Stratified Ekman layers evolving under a finite-time stabilizing buoyancy flux. J. Fluid Mech., 840, 266290, https://doi.org/10.1017/jfm.2018.58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007: On the turbulent Prandtl number in the stable atmospheric boundary layer. Bound.-Layer Meteor., 125, 329341, https://doi.org/10.1007/s10546-007-9192-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, https://doi.org/10.1007/s10546-012-9771-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2015: Similarity theory based on the Dougherty–Ozmidov length scale. Quart. J. Roy. Meteor. Soc., 141, 18451856, https://doi.org/10.1002/qj.2488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A, 317327, https://doi.org/10.3402/tellusa.v55i4.12103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Topics in Micrometeorology. A Festschrift for Arch Dyer, Springer, 5578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurements. Oxford University Press, 289 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., A. Porporato, S. Shah, and E. Bou-Zeid, 2014: Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys. Rev., 89E, 023007, https://doi.org/10.1103/PhysRevE.89.023007.

    • Search Google Scholar
    • Export Citation
  • Kelly, M., R. A. Cersosimo, and J. Berg, 2019: A universal wind profile for the inversion-capped neutral atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 145, 982992, https://doi.org/10.1002/qj.3472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S., 1988: A note on similarity theory for atmospheric boundary layers in the presence of background stable stratification. Tellus, 40A, 434438, https://doi.org/10.3402/tellusa.v40i5.11813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S., and S. M. Joffre, 1988: In search of a simple scaling for the height of the stratified atmospheric boundary layer. Tellus, 40A, 419433, https://doi.org/10.3402/tellusa.v40i5.11812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legaspi, J. D., and M. L. Waite, 2020: Prandtl number dependence of stratified turbulence. J. Fluid Mech., 903, A12, https://doi.org/10.1017/jfm.2020.619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., G. G. Katul, and E. Bou-Zeid, 2015: Turbulent energy spectra and cospectra of momentum and heat fluxes in the stable atmospheric surface layer. Bound.-Layer Meteor., 157, 121, https://doi.org/10.1007/s10546-015-0048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1989: Intermittent of atmospheric turbulence. J. Atmos. Sci., 46, 7995, https://doi.org/10.1175/1520-0469(1989)046<0079:IOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, https://doi.org/10.1007/s001620050093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, D., and E. Fedorovich, 2010: On the limiting effect of the Earth’s rotation on the depth of a stably stratified boundary layer. Quart. J. Roy. Meteor. Soc., 136, 14731480, https://doi.org/10.1002/qj.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moxey, D., and Coauthors, 2020: Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Commun., 249, 107110, https://doi.org/10.1016/j.cpc.2019.107110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299, https://doi.org/10.1007/s10546-004-2818-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohya, Y., 2001: Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Bound.-Layer Meteor., 98, 5782, https://doi.org/10.1023/A:1018767829067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohya, Y., and T. Uchida, 2003: Turbulence structure of stable boundary layers with a near-linear temperature profile. Bound.-Layer Meteor., 108, 1938, https://doi.org/10.1023/A:1023069316164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohya, Y., D. E. Neff, and R. N. Meroney, 1997: Turbulence structure in a stratified boundary layer under stable conditions. Bound.-Layer Meteor., 83, 139162, https://doi.org/10.1023/A:1000205523873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, https://doi.org/10.1002/jame.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., and D. S. Henningson, 2001: Stability and Transition in Shear Flows. Springer, 556 pp., https://doi.org/10.1007/978-1-4613-0185-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senocak, I., and C.-N. Xiao, 2020: Linear instability of stably stratified down-slope flows. Modeling and Simulation of Turbulent Mixing and Reaction, Springer, 4768, https://doi.org/10.1007/978-981-15-2643-5_3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. K., and E. Bou-Zeid, 2014: Direct numerical simulations of turbulent Ekman layers with increasing static stability: Modifications to the bulk structure and second-order statistics. J. Fluid Mech., 760, 494539, https://doi.org/10.1017/jfm.2014.597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and S. Sarkar, 2008a: Direct and large eddy simulations of a bottom Ekman layer under an external stratification. Int. J. Heat Fluid Flow, 29, 721732, https://doi.org/10.1016/j.ijheatfluidflow.2008.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and S. Sarkar, 2008b: Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr., 38, 25352555, https://doi.org/10.1175/2008JPO3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., S. Sarkar, and V. Armenio, 2005: Large eddy simulation of stably stratified open channel flow. Phys. Fluids, 17, 116602, https://doi.org/10.1063/1.2130747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B., A. Moene, H. Jonker, P. Baas, S. Basu, J. Donda, J. Sun, and A. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G., H. J. Clercx, C. Ansorge, A. F. Moene, and B. J. van de Wiel, 2018: Parameters for the collapse of turbulence in the stratified plane Couette flow. J. Atmos. Sci., 75, 32113231, https://doi.org/10.1175/JAS-D-17-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, O., T. Hohman, T. V. Buren, E. Bou-Zeid, and A. J. Smits, 2017: The effect of stable thermal stratification on turbulent boundary layer statistics. J. Fluid Mech., 812, 10391075, https://doi.org/10.1017/jfm.2016.781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Xiao, C.-N., and I. Senocak, 2019: Stability of the Prandtl model for katabatic slope flows. J. Fluid Mech., 865, R2, https://doi.org/10.1017/jfm.2019.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, C.-N., and I. Senocak, 2020: Stability of the anabatic Prandtl slope flow in a stably stratified medium. J. Fluid Mech., 885, A13, https://doi.org/10.1017/jfm.2019.981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and P. Calanca, 2000: An extended similarity theory for the stably stratified atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 126, 19131923, https://doi.org/10.1002/qj.49712656617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and I. N. Esau, 2005: Resistance and heat-transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re-evaluated. Quart. J. Roy. Meteor. Soc., 131, 18631892, https://doi.org/10.1256/qj.04.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., A. Baklanov, J. Rost, A. Smedman, V. Lykosov, and P. Calanca, 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart. J. Roy. Meteor. Soc., 128, 2546, https://doi.org/10.1256/00359000260498770.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 24
Full Text Views 1 1 1
PDF Downloads 2 2 2

Impact of Stratification Mechanisms on Turbulent Characteristics of Stable Open-Channel Flows

View More View Less
  • 1 aDepartment of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
Restricted access

Abstract

Flow over a surface can be stratified by imposing a fixed mean vertical temperature (density) gradient profile throughout or via cooling at the surface. These distinct mechanisms can act simultaneously to establish a stable stratification in a flow. Here, we perform a series of direct numerical simulations of open-channel flows to study adaptation of a neutrally stratified turbulent flow under the combined or independent action of the aforementioned mechanisms. We force the fully developed flow with a constant mass flow rate. This flow forcing technique enables us to keep the bulk Reynolds number constant throughout our investigation and avoid complications arising from the acceleration of the bulk flow if a constant pressure gradient approach were to be adopted to force the flow instead. When both stratification mechanisms are active, the dimensionless stratification perturbation number emerges as an external flow control parameter, in addition to the Reynolds, Froude, and Prandtl numbers. We demonstrate that significant deviations from the Monin–Obukhov similarity formulation are possible when both types of stratification mechanisms are active within an otherwise weakly stable flow, even when the flux Richardson number is well below 0.2. An extended version of the similarity theory due to Zilitinkevich and Calanca shows promise in predicting the dimensionless shear for cases where both types of stratification mechanisms are active, but the extended theory is less accurate for gradients of scalar. The degree of deviation from neutral dimensionless shear as a function of the vertical coordinate emerges as a qualitative measure of the strength of stable stratification for all the cases investigated in this study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Inanc Senocak, senocak@pitt.edu

Abstract

Flow over a surface can be stratified by imposing a fixed mean vertical temperature (density) gradient profile throughout or via cooling at the surface. These distinct mechanisms can act simultaneously to establish a stable stratification in a flow. Here, we perform a series of direct numerical simulations of open-channel flows to study adaptation of a neutrally stratified turbulent flow under the combined or independent action of the aforementioned mechanisms. We force the fully developed flow with a constant mass flow rate. This flow forcing technique enables us to keep the bulk Reynolds number constant throughout our investigation and avoid complications arising from the acceleration of the bulk flow if a constant pressure gradient approach were to be adopted to force the flow instead. When both stratification mechanisms are active, the dimensionless stratification perturbation number emerges as an external flow control parameter, in addition to the Reynolds, Froude, and Prandtl numbers. We demonstrate that significant deviations from the Monin–Obukhov similarity formulation are possible when both types of stratification mechanisms are active within an otherwise weakly stable flow, even when the flux Richardson number is well below 0.2. An extended version of the similarity theory due to Zilitinkevich and Calanca shows promise in predicting the dimensionless shear for cases where both types of stratification mechanisms are active, but the extended theory is less accurate for gradients of scalar. The degree of deviation from neutral dimensionless shear as a function of the vertical coordinate emerges as a qualitative measure of the strength of stable stratification for all the cases investigated in this study.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Inanc Senocak, senocak@pitt.edu
Save