• Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270286, https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L. H., S. L. Gray, and P. A. Clark, 2014: Idealised simulations of sting-jet cyclones. Quart. J. Roy. Meteor. Soc., 140, 96110, https://doi.org/10.1002/qj.2131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., and M. K. Yau, 1994a: Baroclinic instability in a two-layer model with parameterized slantwise convection. J. Atmos. Sci., 51, 971990, https://doi.org/10.1175/1520-0469(1994)051<0971:BIIATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., and M. K. Yau, 1994b: The effects of convection on a simulated marine cyclone. J. Atmos. Sci., 51, 23972417, https://doi.org/10.1175/1520-0469(1994)051<2397:TEOCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., and M. K. Yau, 1995: Explosive marine cyclogenesis in a three-layer model with a representation of slantwise convection: A sensitivity study. J. Atmos. Sci., 52, 533550, https://doi.org/10.1175/1520-0469(1995)052<0533:EMCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, https://doi.org/10.1002/qj.49710544615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., D. Chapman, and R. S. Dixon, 2001a: Stacked slantwise convective circulations. Quart. J. Roy. Meteor. Soc., 127, 25132536, https://doi.org/10.1002/qj.49712757803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., R. S. Dixon, C. Gaffard, and C.-G. Wang, 2001b: Wind profiler measurements in the storm of 30 October 2000. Weather, 56, 367373, https://doi.org/10.1002/j.1477-8696.2001.tb06509.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, https://doi.org/10.1175/2009JCLI3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M. K. Yau, and D. J. Kirshbaum, 2018: Assessment of conditional symmetric instability from global reanalysis data. J. Atmos. Sci., 75, 24252443, https://doi.org/10.1175/JAS-D-17-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M.K. Yau, and D. J. Kirshbaum, 2021: Sensitivities of slantwise convection dynamics to model grid spacing under an idealized framework. Quart. J. Roy. Meteor. Soc., 147, 19301948, https://doi.org/10.1002/qj.4003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S. C., and A. J. Thorpe, 1993: A parameterization scheme for symmetric instability: Tests for an idealized flow. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 203217, https://doi.org/10.1007/978-1-935704-13-3_21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. A., and S. L. Gray, 2018: Sting jets in extratropical cyclones: A review. Quart. J. Roy. Meteor. Soc., 144, 943969, https://doi.org/10.1002/qj.3267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B., J. Booth, and E. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J.-P. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 12491272, https://doi.org/10.1175/MWR-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Emanuel, K. A., 1983a: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 20162033, https://doi.org/10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983b: The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci., 40, 23682376, https://doi.org/10.1175/1520-0469(1983)040<2368:TLPDOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, https://doi.org/10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 18051816, https://doi.org/10.1175/1520-0493(1988)116<1805:OEOSCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glinton, M. R., S. L. Gray, J. M. Chagnon, and C. J. Morcrette, 2017: Modulation of precipitation by conditional symmetric instability release. Atmos. Res., 185, 186201, https://doi.org/10.1016/j.atmosres.2016.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and A. J. Thorpe, 2001: Parcel theory in three dimensions and the calculation of SCAPE. Mon. Wea. Rev., 129, 16561672, https://doi.org/10.1175/1520-0493(2001)129<1656:PTITDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., O. Martínez-Alvarado, L. H. Baker, and P. A. Clark, 2011: Conditional symmetric instability in sting-jet storms. Quart. J. Roy. Meteor. Soc., 137, 14821500, https://doi.org/10.1002/qj.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haualand, K. F., and T. Spengler, 2019: How does latent cooling affect baroclinic development in an idealized framework? J. Atmos. Sci., 76, 27012714, https://doi.org/10.1175/JAS-D-18-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Innocentini, V., and E. D. S. C. Neto, 1992: A numerical study of the role of humidity in the updraft driven by moist slantwise convection. J. Atmos. Sci., 49, 10921106, https://doi.org/10.1175/1520-0469(1992)049<1092:ANSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain ETA coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeworrek, J., G. West, and R. Stull, 2019: Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Wea. Forecasting, 34, 10971115, https://doi.org/10.1175/WAF-D-18-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, https://doi.org/10.1175/2007JCLI1788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1956: Forced and free meridional circulations in the atmosphere. J. Atmos. Sci., 13, 561568, https://doi.org/10.1175/1520-0469(1956)013<0561:FAFMCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., and T. E. Nordeng, 1992: Parameterized slantwise convection in a numerical model. Mon. Wea. Rev., 120, 742756, https://doi.org/10.1175/1520-0493(1992)120<0742:PSCIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, L., 2000: On the parameterization of slantwise convection in general circulation models. Ph.D. thesis, McGill University, 175 pp.

  • Mak, M., 1994: Cyclogenesis in a conditionally unstable moist baroclinic atmosphere. Tellus, 46A, 1433, https://doi.org/10.3402/tellusa.v46i1.15424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, 2016: The pan-Canadian high resolution (2.5 km) deterministic prediction system. Wea. Forecasting, 31, 17911816, https://doi.org/10.1175/WAF-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., 2004: Radar and modelling studies of upright and slantwise convection. Ph.D. thesis, University of Reading, 172 pp.

  • Nordeng, T. E., 1987: The effect of vertical and slantwise convection on the simulation of polar lows. Tellus, 39A, 354375, https://doi.org/10.3402/tellusa.v39i4.11765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1993: Parameterization of slantwise convection in numerical weather prediction models. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 195202, https://doi.org/10.1007/978-1-935704-13-3_20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., and T. T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution. Mon. Wea. Rev., 119, 917935, https://doi.org/10.1175/1520-0493(1991)119<0917:MGOSGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., and T. T. Warner, 1993: Nonlinear hydrostatic conditional symmetric instability: Implications for numerical weather prediction. Mon. Wea. Rev., 121, 18211833, https://doi.org/10.1175/1520-0493(1993)121<1821:NHCSII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., and T. T. Warner, 1995: The nonlinear evolution of idealized, unforced, conditional symmetric instability: A numerical study. J. Atmos. Sci., 52, 34493474, https://doi.org/10.1175/1520-0469(1995)052<3449:TNEOIU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., and M. K. Yau, 1990: Observations of slantwise convective instability in winter cyclones. Mon. Wea. Rev., 118, 447458, https://doi.org/10.1175/1520-0493(1990)118<0447:OOSCII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., and M. K. Yau, 1993: Assessment of slantwise convection in ERICA cyclones. Mon. Wea. Rev., 121, 375386, https://doi.org/10.1175/1520-0493(1993)121<0375:AOSCIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., A. Del Genio, and F. Hourdin, 2019: Ongoing breakthroughs in convective parameterization. Curr. Climate Change Rep., 5, 95111, https://doi.org/10.1007/s40641-019-00127-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability. J. Atmos. Sci., 42, 10501061, https://doi.org/10.1175/1520-0469(1985)042<1050:MSITMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and W. Blumen, 2015: Synoptic meteorology—Fronts. Encyclopedia of Atmospheric Sciences, 2nd ed., G. R. North, J. Pyle, and F. Zhang, Eds., Academic Press, 337343, https://doi.org/10.1016/B978-0-12-382225-3.00039-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and K. A. Browning, 2017: What is a sting jet? Weather, 72, 6366, https://doi.org/10.1002/wea.2795.

  • Seltzer, M. A., R. E. Passarelli, and K. A. Emanuel, 1985: The possible role of symmetric instability in the formation of precipitation bands. J. Atmos. Sci., 42, 22072219, https://doi.org/10.1175/1520-0469(1985)042<2207:TPROSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1990: SCAPE charts from numerical weather prediction model fields. Mon. Wea. Rev., 118, 27452751, https://doi.org/10.1175/1520-0493(1990)118<2745:SCFNWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1986: Parameterization of mesoscale processes. Proc. Seminar on Physical Parameterization for Numerical Models of the Atmosphere, Reading, United Kingdom, ECMWF, 205233.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87. Quart. J. Roy. Meteor. Soc., 117, 903941, https://doi.org/10.1002/qj.49711750103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 14 14 14
Full Text Views 3 3 3
PDF Downloads 3 3 3

A Parameterization of Slantwise Convection in the WRF Model

View More View Less
  • 1 aDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

In this study, we introduce a parameterization scheme for slantwise convection (SC) to be considered for models that are too coarse to resolve slantwise convection explicitly (with a horizontal grid spacing coarser than 15 km or less). This SC scheme operates in a locally defined 2D cross section perpendicular to the deep-layer-averaged thermal wind. It applies momentum tendency to adjust the environment toward slantwise neutrality with a prescribed adjustment time scale. Condensational heating and the associated moisture loss are also considered. To evaluate the added value of the SC scheme, we implement it in the Weather Research and Forecasting (WRF) Model to supplement the existing cumulus parameterization schemes for upright convection and test for two different numerical setups: a 2D idealized, unforced release of conditional symmetric instability (CSI) in an initially conditionally stable environment, and a 3D real-data precipitation event containing both CSI and conditional instability along the cold front of a cyclonic storm near the United Kingdom. Both test cases show significant improvements for the coarse-gridded (40-km) simulations when parameterizing slantwise convection. Compared to the 40-km simulations with only the upright convection scheme, the counterparts with the additional SC scheme exhibit a larger extent of CSI neutralization, generate a stronger grid-resolved slantwise circulation, and produce greater amounts of precipitation, all in better agreement with the corresponding fine-gridded reference simulations. Given the importance of slantwise convection in midlatitude weather systems, our results suggest that there exist potential benefits of parameterizing slantwise convection in general circulation models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Chen Chen, ting-chen.chen@mail.mcgill.ca

Abstract

In this study, we introduce a parameterization scheme for slantwise convection (SC) to be considered for models that are too coarse to resolve slantwise convection explicitly (with a horizontal grid spacing coarser than 15 km or less). This SC scheme operates in a locally defined 2D cross section perpendicular to the deep-layer-averaged thermal wind. It applies momentum tendency to adjust the environment toward slantwise neutrality with a prescribed adjustment time scale. Condensational heating and the associated moisture loss are also considered. To evaluate the added value of the SC scheme, we implement it in the Weather Research and Forecasting (WRF) Model to supplement the existing cumulus parameterization schemes for upright convection and test for two different numerical setups: a 2D idealized, unforced release of conditional symmetric instability (CSI) in an initially conditionally stable environment, and a 3D real-data precipitation event containing both CSI and conditional instability along the cold front of a cyclonic storm near the United Kingdom. Both test cases show significant improvements for the coarse-gridded (40-km) simulations when parameterizing slantwise convection. Compared to the 40-km simulations with only the upright convection scheme, the counterparts with the additional SC scheme exhibit a larger extent of CSI neutralization, generate a stronger grid-resolved slantwise circulation, and produce greater amounts of precipitation, all in better agreement with the corresponding fine-gridded reference simulations. Given the importance of slantwise convection in midlatitude weather systems, our results suggest that there exist potential benefits of parameterizing slantwise convection in general circulation models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Chen Chen, ting-chen.chen@mail.mcgill.ca
Save