• Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., A. Lauer, and J.-L. Brenguier, 2011: Scale-aware integral constraints on autoconversion and accretion in regional and global climate models. Geophys. Res. Lett., 38, L10809, https://doi.org/10.1029/2011GL047618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., 140, 583594, https://doi.org/10.1002/qj.2140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967978, https://doi.org/10.1175/BAMS-85-7-967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2019: Cheyenne: HPE/SGI ICE XA System (University Community Computing). National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 80558072, https://doi.org/10.1029/94JD00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558, https://doi.org/10.1175/1520-0469(1996)053<1538:SIOLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, H. Gerber, and W. J. Wiscombe, 1999: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. J. Geophys. Res., 104, 61236144, https://doi.org/10.1029/1998JD200078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., M. Waruszewski, and H. Pawlowska, 2019: University of Warsaw Lagrangian cloud model (UWLCM) 1.0: A modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics. Geosci. Model Dev., 12, 25872606, https://doi.org/10.5194/gmd-12-2587-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, T. Yamaguchi, and J. Kazil, 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 73517367, https://doi.org/10.5194/acp-15-7351-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. Arends, and A. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, https://doi.org/10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2017: An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer. Atmos. Chem. Phys., 17, 94519468, https://doi.org/10.5194/acp-17-9451-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazil, J., T. Yamaguchi, and G. Feingold, 2017: Mesoscale organization, entrainment, and the properties of a closed-cell stratocumulus cloud. J. Adv. Model. Earth Syst., 9, 22142229, https://doi.org/10.1002/2017MS001072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W., C. Maher, and G. Hepburn, 1981: Further performance tests on the CSIRO liquid water probe. J. Appl. Meteor. Climatol., 20, 195202, https://doi.org/10.1175/1520-0450(1981)020<0195:FPTOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuell, V., and A. Bott, 2014: Stochastic parameterization of cloud processes. Atmos. Res., 143, 176197, https://doi.org/10.1016/j.atmosres.2014.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamer, K., B. P. Treserras, Z. Zhu, B. Isom, N. Bharadwaj, and P. Kollias, 2019: Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the eastern North Atlantic ARM observatory. Atmos. Meas. Tech., 12, 49314947, https://doi.org/10.5194/amt-12-4931-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and B. M. Griffin, 2013: Analytical upscaling of a local microphysics scheme. Part I: Derivation. Quart. J. Roy. Meteor. Soc., 139, 4657, https://doi.org/10.1002/qj.1967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, and W. R. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539, https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M., H. Morrison, and A. Gettelman, 2013: Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing. J. Geophys. Res. Atmos., 118, 65216533, https://doi.org/10.1002/jgrd.50347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., A. M. Fridlind, and A. S. Ackerman, 2019: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part I: Collision–coalescence. J. Atmos. Sci., 76, 247263, https://doi.org/10.1175/JAS-D-18-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., A. M. Fridlind, and A. S. Ackerman, 2021: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part II: Condensation and evaporation. J. Atmos. Sci., 78, 16291645, https://doi.org/10.1175/JAS-D-20-0213.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and C. Liu, 2007: A validation of the fractal dimension of cloud boundaries. Geophys. Res. Lett., 34, L03808, https://doi.org/10.1029/2006GL028472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y.-F., S. P. Malinowski, K. Karpinska, H. E. Gerber, and W. Kumala, 2017: Scaling analysis of temperature and liquid water content in the marine boundary layer clouds during POST. J. Atmos. Sci., 74, 40754092, https://doi.org/10.1175/JAS-D-17-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Colorado State University Atmospheric Science Paper 266, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54, 14231444, https://doi.org/10.1175/1520-0469(1997)054<1423:SIILWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34, 356358, https://doi.org/10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., 2012: Constraints on the profiles of total water PDF in AGCMS from AIRS and a high-resolution model. J. Climate, 25, 83418352, https://doi.org/10.1175/JCLI-D-11-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Spurious broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2019: Stochastic weather and climate models. Nat. Rev. Phys., 1, 463471, https://doi.org/10.1038/s42254-019-0062-2.

  • Park, S., 2014: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, https://doi.org/10.1175/JAS-D-13-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paukert, M., J. Fan, P. J. Rasch, H. Morrison, J. A. Milbrandt, J. Shpund, and A. Khain, 2019: Three-moment representation of rain in a bulk microphysics model. J. Adv. Model. Earth Syst., 11, 257277, https://doi.org/10.1029/2018MS001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1996: Anomalous scaling of high cloud variability in the tropical Pacific. Geophys. Res. Lett., 23, 10951098, https://doi.org/10.1029/96GL01121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105, 27 05927 065, https://doi.org/10.1029/2000JD900504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp., https://doi.org/10.1007/978-0-306-48100-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, X., S. Wang, and J. Min, 2018: The impact of a stochastically perturbing microphysics scheme on an idealized supercell storm. Mon. Wea. Rev., 146, 95118, https://doi.org/10.1175/MWR-D-17-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., and Coauthors, 2017: Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteor. Climatol., 56, 32633283, https://doi.org/10.1175/JAMC-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105, 15 49515 507, https://doi.org/10.1029/2000JD900129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605, https://doi.org/10.1175/2007JAS2456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 2011: Multifractals, generalized scale invariance and complexity in geophysics. Int. J. Bifurcation Chaos, 21, 34173456, https://doi.org/10.1142/S0218127411030647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281, https://doi.org/10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and H. J. J. Jonker, 2000: Anomalous scaling of cumulus cloud boundaries. Phys. Rev. Lett., 85, 214217, https://doi.org/10.1103/PhysRevLett.85.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, https://doi.org/10.1175/1520-0469(1977)034 <0344:SSCIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanford, M. W., H. Morrison, A. Varble, J. Berner, W. Wu, G. McFarquhar, and J. Milbrandt, 2019: Sensitivity of simulated deep convection to a stochastic ice microphysics framework. J. Adv. Model. Earth Syst., 11, 33623389, https://doi.org/10.1029/2019MS001730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149, https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of rain-drop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123327, https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, T., and J. Quaas, 2011: Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization using a PDF-scheme. J. Adv. Model. Earth Syst., 4, M11003, https://doi.org/10.1029/2012MS000156.

    • Search Google Scholar
    • Export Citation
  • Witte, M. K., O. Ayala, L. P. Wang, G. Feingold, and P. Y. Chuang, 2019a: Comparison of observed and simulated drop size spectra from large-eddy simulations with bin microphysics. Mon. Wea. Rev., 147, 477493, https://doi.org/10.1175/MWR-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, M. K., H. Morrison, J. B. Jensen, A. Bansemer, and A. Gettelman, 2019b: On the covariability of cloud and rain water as a function of length scale. J. Atmos. Sci., 76, 22952308, https://doi.org/10.1175/JAS-D-19-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., B. Xi, X. Dong, and Z. Zhang, 2018: Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores. Atmos. Chem. Phys., 18, 17 40517 420, https://doi.org/10.5194/acp-18-17405-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Zhang, 2015: Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM. J. Geophys. Res. Atmos., 120, 83598371, https://doi.org/10.1002/2015JD023565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., H. Song, P.-L. Ma, V. E. Larson, M. Wang, X. Dong, and J. Wang, 2019: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: Satellite observations and implications for warm rain simulations in climate models. Atmos. Chem. Phys., 19, 10771096, https://doi.org/10.5194/acp-19-1077-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2021: Vertical dependence of horizontal variation of cloud microphysics: Observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models. Atmos. Chem. Phys., 21, 31033121, https://doi.org/10.5194/acp-21-3103-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., A. S. Ackerman, A. M. Fridlind, and P. Kollias, 2018: Simulation of mesoscale cellular convection in marine stratocumulus. Part I: Drizzling conditions. J. Atmos. Sci., 75, 257274, https://doi.org/10.1175/JAS-D-17-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 11 11 11
Full Text Views 10 10 10
PDF Downloads 11 11 11

Limitations of Bin and Bulk Microphysics in Reproducing the Observed Spatial Structure of Light Precipitation

View More View Less
  • 1 aNaval Postgraduate School, Monterey, California
  • | 2 bJet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 cJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
  • | 4 dNational Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Coarse-gridded atmospheric models often account for subgrid-scale variability by specifying probability distribution functions (PDFs) of process rate inputs such as cloud and rainwater mixing ratios (qc and qr, respectively). PDF parameters can be obtained from numerous sources: in situ observations, ground- or space-based remote sensing, or fine-scale modeling such as large-eddy simulation (LES). LES is appealing to constrain PDFs because it generates large sample sizes, can simulate a variety of cloud regimes/case studies, and is not subject to the ambiguities of observations. However, despite the appeal of using model output for parameterization development, it has not been demonstrated that LES satisfactorily reproduces the observed spatial structure of microphysical fields. In this study, the structure of observed and modeled microphysical fields are compared by applying bifractal analysis, an approach that quantifies variability across spatial scales, to simulations of a drizzling stratocumulus field that span a range of domain sizes, drop concentrations (a proxy for mesoscale organization), and microphysics schemes (bulk and bin). Simulated qc closely matches observed estimates of bifractal parameters that measure smoothness and intermittency. There are major discrepancies between observed and simulated qr properties, though, with bulk simulated qr consistently displaying the bifractal properties of observed clouds (smooth, minimally intermittent) rather than rain while bin simulations produce qr that is appropriately intermittent but too smooth. These results suggest fundamental limitations of bulk and bin schemes to realistically represent higher-order statistics of the observed rain structure.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikael Witte, mikael.witte@nps.edu

Abstract

Coarse-gridded atmospheric models often account for subgrid-scale variability by specifying probability distribution functions (PDFs) of process rate inputs such as cloud and rainwater mixing ratios (qc and qr, respectively). PDF parameters can be obtained from numerous sources: in situ observations, ground- or space-based remote sensing, or fine-scale modeling such as large-eddy simulation (LES). LES is appealing to constrain PDFs because it generates large sample sizes, can simulate a variety of cloud regimes/case studies, and is not subject to the ambiguities of observations. However, despite the appeal of using model output for parameterization development, it has not been demonstrated that LES satisfactorily reproduces the observed spatial structure of microphysical fields. In this study, the structure of observed and modeled microphysical fields are compared by applying bifractal analysis, an approach that quantifies variability across spatial scales, to simulations of a drizzling stratocumulus field that span a range of domain sizes, drop concentrations (a proxy for mesoscale organization), and microphysics schemes (bulk and bin). Simulated qc closely matches observed estimates of bifractal parameters that measure smoothness and intermittency. There are major discrepancies between observed and simulated qr properties, though, with bulk simulated qr consistently displaying the bifractal properties of observed clouds (smooth, minimally intermittent) rather than rain while bin simulations produce qr that is appropriately intermittent but too smooth. These results suggest fundamental limitations of bulk and bin schemes to realistically represent higher-order statistics of the observed rain structure.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikael Witte, mikael.witte@nps.edu
Save