• Bei, N., and F. Zhang, 2014: Mesoscale predictability of moist baroclinic waves: Variable and scale-dependent error growth. Adv. Atmos. Sci., 31, 9951008, https://doi.org/10.1007/s00376-014-3191-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 9599, https://doi.org/10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, https://doi.org/10.1175/JAS-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, https://doi.org/10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., P. A. Reinecke, and J. D. Doyle, 2013: Large-scale errors and mesoscale predictability in Pacific Northwest snowstorms. J. Atmos. Sci., 70, 14701487, https://doi.org/10.1175/JAS-D-12-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., J. A. Weyn, and M. Q. Menchaca, 2017: Practical considerations for computing dimensional spectra from gridded data. Mon. Wea. Rev., 145, 39013910, https://doi.org/10.1175/MWR-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, https://doi.org/10.1175/1520-0493(1996)124,2322:NBLVDI.2.0.CO;2..

    • Crossref
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamente, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M., and Y. Jung, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, https://doi.org/10.1175/MWR-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishore, P., S. P. Namboothiri, K. Igarashi, J. H. Jiang, C. O. Ao, and L. J. Romans, 2006: Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J. Geophys. Res., 111, D20110, https://doi.org/10.1029/2005JD006827.

    • Crossref
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28, 145161, https://doi.org/10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29, 10411058, https://doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, T. Y., M. Leutbecher, S. Reich, and T. G. Shepher, 2020: Impact of the mesoscale range on error growth and the limits to atmospheric predictability. J. Atmos. Sci., 77, 37693779, https://doi.org/10.1175/JAS-D-19-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1972: Numerical simulation studies of two-dimensional turbulence: II. Stability and predictability studies. Geophys. Fluid Dyn., 4, 128, https://doi.org/10.1080/03091927208236087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022,1065:BPOTSF.2.0.CO;2.

    • Crossref
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660, https://doi.org/10.1175/1520-0493(1997)125<0655:TDCWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, T. Nasuno, and M. Satoh, 2008: Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteor. Soc. Japan, 86A, 175185, https://doi.org/10.2151/jmsj.86A.175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2017: Mountain waves, downslope winds, and low-level blocking forced by a midlatitude cyclone encountering an isolated ridge. J. Atmos. Sci., 74, 617639, https://doi.org/10.1175/JAS-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2019: The influence of gravity waves on the slope of the kinetic energy spectrum in simulations of idealized midlatitude cyclones. J. Atmos. Sci., 76, 21032122, https://doi.org/10.1175/JAS-D-18-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Métais, O., and M. Lesieur, 1986: Statistical predictability of decaying turbulence. J. Atmos. Sci., 43, 857870, https://doi.org/10.1175/1520-0469(1986)043<0857:SPODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oertel, A., M. Sprenger, H. Joos, M. Boettcher, H. Konow, M. Hagen, and H. Wernli, 2021: Observations and simulation of intense convection embedded in a warm conveyor belt—How ambient vertical wind shear determines the dynamical impact. Wea. Climate Dyn., 2, 89110, https://doi.org/10.5194/wcd-2-89-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Analytical theories of turbulence. J. Fluid Mech., 41, 363386, https://doi.org/10.1017/S0022112070000642.

  • Palmer, T. N., A. Döring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123R141, https://doi.org/10.1088/0951-7715/27/9/R123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, https://doi.org/10.1175/BAMS-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, https://doi.org/10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci., 51, 33733398, https://doi.org/10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selz, T., and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Wea. Rev., 143, 813827, https://doi.org/10.1175/MWR-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, https://doi.org/10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., and F. Zhang, 2020: A new theoretical framework for understanding multiscale atmospheric predictability. J. Atmos. Sci., 77, 22972309, https://doi.org/10.1175/JAS-D-19-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z.-M., F. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 17941804, https://doi.org/10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703713, https://doi.org/10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 21912210, https://doi.org/10.1175/JAS-D-17-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, J. A., and D. R. Durran, 2018: Ensemble spread grows more rapidly in higher-resolution simulations of deep convection. J. Atmos. Sci., 75, 33313345, https://doi.org/10.1175/JAS-D-17-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, J. A., and D. R. Durran, 2019: The scale dependence of initial-condition sensitivities in simulations of convective systems over the southeastern United States. Quart. J. Roy. Meteor. Soc., 145 (Suppl. 1), 5774, https://doi.org/10.1002/qj.3367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, https://doi.org/10.1175/JAS4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10071091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 27 27 27
Full Text Views 7 7 7
PDF Downloads 8 8 8

Mesoscale Predictability in Moist Midlatitude Cyclones Is Not Sensitive to the Slope of the Background Kinetic Energy Spectrum

View More View Less
  • 1 aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

We investigate the sensitivity of mesoscale atmospheric predictability to the slope of the background kinetic energy spectrum E by adding initial errors to simulations of idealized moist midlatitude cyclones at several wavenumbers k for which the slope of E(k) is significantly different. These different slopes arise from 1) differences in the E(k) generated by cyclones growing in two different moist baroclinically unstable environments, and 2) differences in the horizontal scale at which initial perturbations are added, with E(k) having steeper slopes at larger scales. When small-amplitude potential temperature perturbations are added, the error growth through the subsequent 36-h simulation is not sensitive to the slope of E(k) nor to the horizontal scale of the initial error. In all cases with small-amplitude perturbations, the error growth in physical space is dominated by moist convection along frontal boundaries. As such, the error field is localized in physical space and broad in wavenumber (spectral) space. In moist midlatitude cyclones, these broadly distributed errors in wavenumber space limit mesoscale predictability by growing up-amplitude rather than by cascading upscale to progressively longer wavelengths. In contrast, the error distribution in homogeneous turbulence is broad in physical space and localized in wavenumber space, and dimensional analysis can be used to estimate the error growth rate at a specific wavenumber k from E(k). Predictability estimates derived in this manner, and from the numerical solutions of idealized models of homogeneous turbulence, depend on whether the slope of E(k) is shallower or steeper than k−3, which differs from the slope-insensitive behavior exhibited by moist midlatitude cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 8 February 2022 in order to improve the resolution of Figs. 8-11, which were degraded when originally published.

Corresponding author: Daniel J. Lloveras, lloveras@uw.edu

Abstract

We investigate the sensitivity of mesoscale atmospheric predictability to the slope of the background kinetic energy spectrum E by adding initial errors to simulations of idealized moist midlatitude cyclones at several wavenumbers k for which the slope of E(k) is significantly different. These different slopes arise from 1) differences in the E(k) generated by cyclones growing in two different moist baroclinically unstable environments, and 2) differences in the horizontal scale at which initial perturbations are added, with E(k) having steeper slopes at larger scales. When small-amplitude potential temperature perturbations are added, the error growth through the subsequent 36-h simulation is not sensitive to the slope of E(k) nor to the horizontal scale of the initial error. In all cases with small-amplitude perturbations, the error growth in physical space is dominated by moist convection along frontal boundaries. As such, the error field is localized in physical space and broad in wavenumber (spectral) space. In moist midlatitude cyclones, these broadly distributed errors in wavenumber space limit mesoscale predictability by growing up-amplitude rather than by cascading upscale to progressively longer wavelengths. In contrast, the error distribution in homogeneous turbulence is broad in physical space and localized in wavenumber space, and dimensional analysis can be used to estimate the error growth rate at a specific wavenumber k from E(k). Predictability estimates derived in this manner, and from the numerical solutions of idealized models of homogeneous turbulence, depend on whether the slope of E(k) is shallower or steeper than k−3, which differs from the slope-insensitive behavior exhibited by moist midlatitude cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 8 February 2022 in order to improve the resolution of Figs. 8-11, which were degraded when originally published.

Corresponding author: Daniel J. Lloveras, lloveras@uw.edu
Save