Seasonal Superrotation in Earth’s Troposphere

Pengcheng Zhang aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Pengcheng Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4456-736X
and
Nicholas J. Lutsko aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Nicholas J. Lutsko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although Earth’s troposphere does not superrotate in the annual mean, for most of the year—from October to May—the winds of the tropical upper troposphere are westerly. We investigate this seasonal superrotation using reanalysis data and a single-layer model for the winds of the tropical upper troposphere. We characterize the temporal and spatial structures of the tropospheric superrotation, and quantify the relationships between the superrotation and the leading modes of tropical interannual variability. We also find that the strength of the superrotation has remained roughly constant over the past few decades, despite the winds of the tropical upper troposphere decelerating (becoming more easterly) in other months. We analyze the monthly zonal-mean zonal momentum budget and use numerical simulations with an axisymmetric, single-layer model of the tropical upper troposphere to study the underlying dynamics of the seasonal superrotation. Momentum flux convergence by stationary eddies accelerates the superrotation, while cross-equatorial easterly momentum transport associated with the Hadley circulation decelerates the superrotation. The seasonal modulations of these two competing factors shape the superrotation. The single-layer model is able to qualitatively reproduce the seasonal progression of the winds in the tropical upper troposphere, and highlights the northward displacement of the intertropical convergence zone in the annual mean as a key factor responsible for the annual cycle of the tropical winds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pengcheng Zhang, pczhang@ucsd.edu

Abstract

Although Earth’s troposphere does not superrotate in the annual mean, for most of the year—from October to May—the winds of the tropical upper troposphere are westerly. We investigate this seasonal superrotation using reanalysis data and a single-layer model for the winds of the tropical upper troposphere. We characterize the temporal and spatial structures of the tropospheric superrotation, and quantify the relationships between the superrotation and the leading modes of tropical interannual variability. We also find that the strength of the superrotation has remained roughly constant over the past few decades, despite the winds of the tropical upper troposphere decelerating (becoming more easterly) in other months. We analyze the monthly zonal-mean zonal momentum budget and use numerical simulations with an axisymmetric, single-layer model of the tropical upper troposphere to study the underlying dynamics of the seasonal superrotation. Momentum flux convergence by stationary eddies accelerates the superrotation, while cross-equatorial easterly momentum transport associated with the Hadley circulation decelerates the superrotation. The seasonal modulations of these two competing factors shape the superrotation. The single-layer model is able to qualitatively reproduce the seasonal progression of the winds in the tropical upper troposphere, and highlights the northward displacement of the intertropical convergence zone in the annual mean as a key factor responsible for the annual cycle of the tropical winds.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pengcheng Zhang, pczhang@ucsd.edu
Save
  • Adames, A. F., and J. M. Wallace, 2017: On the tropical atmospheric signature of El Niño. J. Atmos. Sci., 74, 19231939, https://doi.org/10.1175/JAS-D-16-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., E. Tziperman, and B. Farrell, 2012: Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci., 69, 626640, https://doi.org/10.1175/JAS-D-11-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

    • Search Google Scholar
    • Export Citation
  • Belton, M. J. S., and Coauthors, 1991: Images from Galileo of the Venus cloud deck. Science, 253, 15311536, https://doi.org/10.1126/science.253.5027.1531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, M. K., and Coauthors, 2005: The vertical profile of winds on Titan. Nature, 438, 800802, https://doi.org/10.1038/nature04060.

  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, https://doi.org/10.1029/2010GL043468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlman, L., 2016: Climate variability: Oceanic Niño index. NOAA, https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-nino-index.

    • Crossref
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, https://doi.org/10.1175/JAS3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513, https://doi.org/10.1175/JAS3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Kleinschmidt, 1957: Dynamic meteorology. Handbuch der Physik, Vol. 48, Springer, 64–72.

    • Crossref
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genio, A. D. D., R. K. Achterberg, K. H. Baines, F. M. Flasar, P. L. Read, A. Sánchez-Lavega, and A. P. Showman, 2009: Saturn atmospheric structure and dynamics. Saturn from Cassini-Huygens, M. K. Dougherty, L. W. Esposito, and S. M. Krimigis, Eds., Springer, 113159.

    • Crossref
    • Export Citation
  • Gierasch, P. J., 1975: Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32, 10381044, https://doi.org/10.1175/1520-0469(1975)032<1038:MCATMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 inst3_3d_asm_Np: 3d, 3-hourly, instantaneous, pressure-level, assimilation, assimilated meteorological fields version 5.12.4. GES DISC, accessed September 2021, https://doi.org/10.5067/QBZ6MG944HW0.

    • Crossref
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, https://doi.org/10.1175/JAS-D-11-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497, https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2.

    • Crossref
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

  • Herbert, C., R. Caballero, and F. Bouchet, 2020: Atmospheric bistability and abrupt transitions to superrotation: Wave–jet resonance and Hadley cell feedbacks. J. Atmos. Sci., 77, 3149, https://doi.org/10.1175/JAS-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853, https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hide, R., 1970: Equatorial jets in planetary atmospheres. Nature, 225, 254255, https://doi.org/10.1038/225254b0.

  • Hide, R., and P. Mason, 1975: Sloping convection in a rotating fluid. Adv. Phys., 24, 47100, https://doi.org/10.1080/00018737500101371.

  • Hill, S. A., S. Bordoni, and J. L. Mitchell, 2019: Axisymmetric constraints on cross-equatorial Hadley cell extent. J. Atmos. Sci., 76, 15471564, https://doi.org/10.1175/JAS-D-18-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2020: How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science, 368, 405409, https://doi.org/10.1126/science.aaz4439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., R. Neale, M. Rodwell, and G.-Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus, 51A, 3344, https://doi.org/10.3402/tellusa.v51i1.12287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostiuk, T., and Coauthors, 2006: Stratospheric global winds on Titan at the time of Huygens descent. J. Geophys. Res., 111, E07S03, https://doi.org/10.1029/2005JE002630.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389, https://doi.org/10.1175/JAS-3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laraia, A. L., and T. Schneider, 2015: Superrotation in terrestrial atmospheres. J. Atmos. Sci., 72, 42814296, https://doi.org/10.1175/JAS-D-15-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363, https://doi.org/10.1175/1520-0469(1999)056<1353:WATCZW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, N. T., G. J. Colyer, and P. L. Read, 2021: Characterizing regimes of atmospheric circulation in terms of their global superrotation. J. Atmos. Sci., 78, 12451258, https://doi.org/10.1175/JAS-D-20-0326.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, Y.-A., and S. Ravindra Babu, 2020: ENSO signatures observed in tropical tropopause layer parameters using long-term COSMIC RO data. GPS Solutions, 24, 98, https://doi.org/10.1007/s10291-020-01009-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., 2018: The response of an idealized atmosphere to localized tropical heating: Superrotation and the breakdown of linear theory. J. Atmos. Sci., 75, 320, https://doi.org/10.1175/JAS-D-17-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., M. I. Hegglin, and Z. D. Lawrence, 2021: Seasonal and regional signatures of ENSO in upper tropospheric jet characteristics from reanalyses. J. Climate, 34, 91819200, https://doi.org/10.1175/JCLI-D-20-0947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., and G. K. Vallis, 2010: The transition to superrotation in terrestrial atmospheres. J. Geophys. Res., 115, E12008, https://doi.org/10.1029/2010JE003587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., G. K. Vallis, and S. F. Potter, 2014: Effects of the seasonal cycle on superrotation in planetary atmospheres. Astrophys. J., 787, 23, https://doi.org/10.1088/0004-637X/787/1/23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: Four El Niño regions. NOAA, accessed September 2020, https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml.

    • Crossref
    • Export Citation
  • NOAA, 2021: Cold and warm episodes by season. NOAA, accessed September 2021, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

    • Crossref
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431, https://doi.org/10.1175/JAS3698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta, J., R. Hueso, and A. Sánchez-Lavega, 2007: A reanalysis of Venus winds at two cloud levels from Galileo SSI images. Icarus, 190, 469477, https://doi.org/10.1016/j.icarus.2007.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and M. Hammond, 2019: Atmospheric circulation of tide-locked exoplanets. Annu. Rev. Fluid Mech., 51, 275303, https://doi.org/10.1146/annurev-fluid-010518-040516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. R. D., and J. L. Mitchell, 2016: Wave–mean flow interactions and the maintenance of superrotation in a terrestrial atmosphere. J. Atmos. Sci., 73, 31813196, https://doi.org/10.1175/JAS-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., and J. Y.-K. Cho, 2016: Equatorial superrotation in Held and Suarez like flows with weak equator-to-pole surface temperature gradient. Quart. J. Roy. Meteor. Soc., 142, 15281540, https://doi.org/10.1002/qj.2755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, S. F., G. K. Vallis, and J. L. Mitchell, 2014: Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J. Atmos. Sci., 71, 596614, https://doi.org/10.1175/JAS-D-13-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, S., 1989: Rossby-Kelvin instability: A new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech., 202, 149176, https://doi.org/10.1017/S0022112089001138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227, https://doi.org/10.1175/1520-0469(1993)050<1211:ESAMOT>2.0.CO;2.

    • Crossref
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiff, A., 2000: Dynamics of Jupiter’s atmosphere. Nature, 403, 603605, https://doi.org/10.1038/35001171.

  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, https://doi.org/10.1175/JAS-D-13-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and L. M. Polvani, 2010: The Matsuno-Gill model and equatorial superrotation. Geophys. Res. Lett., 37, L18811, https://doi.org/10.1029/2010GL044343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and L. M. Polvani, 2011: Equatorial superrotation on tidally locked exoplanets. Astrophys. J., 738, 71, https://doi.org/10.1088/0004-637X/738/1/71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and T. Schneider, 2009: Single-layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing. J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.10.

    • Crossref
    • Export Citation
  • Sobel, A. H., and T. Schneider, 2013: Correction to “Single-layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing.” J. Adv. Model. Earth Syst., 5, 654657, https://doi.org/10.1002/jame.20030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49, 15411554, https://doi.org/10.1175/1520-0469(1992)049<1541:TSABOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1971: Why there is an intense eastward current in the North Atlantic but not in the South Atlantic. J. Phys. Oceanogr., 1, 235237, https://doi.org/10.1175/1520-0485(1971)001<0235:WTIAIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, S.-M., I. Dobbs-Dixon, and P.-G. Gu, 2014: Three-dimensional structures of equatorial waves and the resulting super-rotation in the atmosphere of a tidally locked hot Jupiter. Astrophys. J., 793, 141, https://doi.org/10.1088/0004-637X/793/2/141.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and B. Farrell, 2009: Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 24, PA1101, https://doi.org/10.1029/2008PA001652.

    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. L. Mitchell, 2014: Planetary ageostrophic instability leads to superrotation. Geophys. Res. Lett., 41, 41184126, https://doi.org/10.1002/2014GL060345.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2003: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60, 21362152, https://doi.org/10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, K., T. Nakamura, J. Ukita, and K. Hoshi, 2020: A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex. Atmos. Chem. Phys., 20, 51115127, https://doi.org/10.5194/acp-20-5111-2020.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and L. Gray, 2012: The influence of the QBO on the propagation of equatorial waves into the stratosphere. J. Atmos. Sci., 69, 29592982, https://doi.org/10.1175/JAS-D-11-0342.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, and M. A. Cane, 2013: Zonal momentum balance in the tropical atmospheric circulation during the global monsoon mature months. J. Atmos. Sci., 70, 583599, https://doi.org/10.1175/JAS-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., 2019: The role of the divergent circulation for large-scale eddy momentum transport in the tropics. Part I: Observations. J. Atmos. Sci., 76, 11251144, https://doi.org/10.1175/JAS-D-18-0297.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and I. M. Held, 2018: The finite-amplitude evolution of mixed Kelvin–Rossby wave instability and equatorial superrotation in a shallow-water model and an idealized GCM. J. Atmos. Sci., 75, 22992316, https://doi.org/10.1175/JAS-D-17-0386.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., A. Anaya-Benlliure, and I. M. Held, 2022: The sensitivity of superrotation to the latitude of baroclinic forcing in a terrestrial dry dynamical core. J. Atmos. Sci., 79, 13111323, https://doi.org/10.1175/JAS-D-21-0269.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 680 263 39
Full Text Views 282 129 7
PDF Downloads 259 107 7