• Adler, R. F., M. J. Markus, D. D. Fenn, G. Szejwach, and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and M. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://doi.org/10.55599/ejssm.v10i3.60.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.

  • Anderson, J. G., and Coauthors, 2017: Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis. Proc. Natl. Acad. Sci. USA, 114, E4905E4913, https://doi.org/10.1073/pnas.1619318114.

    • Search Google Scholar
    • Export Citation
  • Añel, J. A., J. C. Antuña, L. de la Torre, J. M. Castanheira, and L. Gimeno, 2008: Climatological features of global multiple tropopause events. J. Geophys. Res., 113, D00B08, https://doi.org/10.1029/2007JD009697.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. Wang, R. Rogers, L. D. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, https://doi.org/10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., E. M. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Search Google Scholar
    • Export Citation
  • Carletta, N. D., G. L. Mullendore, M. Starzec, B. Xi, Z. Feng, and X. Dong, 2016: Determining the best method for estimating the observed level of maximum detrainment based on radar reflectivity. Mon. Wea. Rev., 144, 29152926, https://doi.org/10.1175/MWR-D-15-0427.1.

    • Search Google Scholar
    • Export Citation
  • CIESIN, 2018: Gridded Population of the World, version 4 (GPWv4): Population density, revision 11. NASA SEDAC, accessed 8 September 2021, https://doi.org/10.7927/H49C6VHW.

  • Fujita, T. T., 1974: Overshooting thunderheads observed from ATS and Learjet. Satellite and Mesometeorology Research Project Rep. 117, 29 pp.

  • Fujita, T. T., 1982: Principle of stereographic height computations and their application to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355–368, https://doi.org/10.2151/jmsj1965.60.1_355.

  • Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.

  • Heymsfield, G. M., R. H. Blackmer, and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and R. Spang, 2022: An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses. Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126, 33033325, https://doi.org/10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2022: Algorithm description document for version 4.2 of the three-dimensional gridded NEXRAD WSR-88D Radar (GridRad) dataset. GridRad Tech. Rep., 30 pp.

  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka, 2018: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. Quart. J. Roy. Meteor. Soc., 144, 231250, https://doi.org/10.1002/qj.3197.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, https://doi.org/10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, W., Y. Yuan, Y. Chai, Y. Liou, J. Ou, and S. Zhong, 2017: Characteristics of the global thermal tropopause derived from multiple radio occultation measurements. Atmos. Res., 185, 142157, https://doi.org/10.1016/j.atmosres.2016.09.013.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek, 2006: GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Wea. Rev., 134, 23422353, https://doi.org/10.1175/MWR3211.1.

    • Search Google Scholar
    • Export Citation
  • Luderer, G., J. Trentmann, K. Hungershöfer, M. Herzog, M. Fromm, and M. O. Andreae, 2007: Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyro-cumulonimbus storms. Atmos. Chem. Phys., 7, 59455957, https://doi.org/10.5194/acp-7-5945-2007.

    • Search Google Scholar
    • Export Citation
  • Manney, G., and Coauthors, 2017: Reanalysis comparisons of upper tropospheric–lower stratospheric jets and multiple tropopauses. Atmos. Chem. Phys., 17, 11 54111 566, https://doi.org/10.5194/acp-17-11541-2017.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., T. N. Sandmæl, E. M. Murillo, C. R. Homeyer, K. M. Bedka, J. M. Apke, and C. P. Jewett, 2021: A random-forest model to assess predictor importance and nowcast severe storms using high-resolution radar–GOES satellite–lightning observations. Mon. Wea. Rev., 149, 17251746, https://doi.org/10.1175/MWR-D-19-0274.1.

    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, https://doi.org/10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., A. J. Homann, K. Bevers, and C. Schumacher, 2009: Radar reflectivity as a proxy for convective mass transport. J. Geophys. Res., 114, D16103, https://doi.org/10.1029/2008JD011431.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., 2022: Above-anvil cirrus plume producing storm tracks. Zenodo, accessed 8 August 2022, https://doi.org/10.5281/zenodo.6977684

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2020: Storm events database, version 3.1. NOAA/NCEI, accessed January 2022, https://www.ncdc.noaa.gov/stormevents/.

  • NOAA/NCEI, 2022: NCEI data in the NOAA big data program. NOAA/NCEI, accessed January 2022, https://www.ncei.noaa.gov/access/cloud-access.

  • NOAA/NWS/Radar Operations Center, 1991: NOAA Next Generation Radar (NEXRAD) level 2 base data. NOAA/NCEI, accessed January 2022, https://doi.org/10.7289/V5W9574V.

  • O’Neill, M. E., L. Orf, G. M. Heymsfield, and K. Halbert, 2021: Hydraulic jump dynamics above supercell thunderstorms. Science, 373, 12481251, https://doi.org/10.1126/science.abh3857.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., S. B. Honomichl, T. V. Bui, T. Thornberry, A. Rollins, E. Hintsa, and E. J. Jensen, 2018: Lapse rate or cold point: The tropical tropopause identified by in situ trace gas measurements. Geophys. Res. Lett., 45, 10 75610 763, https://doi.org/10.1029/2018GL079573.

    • Search Google Scholar
    • Export Citation
  • Púčik, T., M. Valachová, and P. Zacharov, 2013: Upper tropospheric conditions in relation to the cloud top features of 15 August 2010 convective storms. Atmos. Res., 123, 249–267, https://doi.org/10.1016/j.atmosres.2012.10.006.

  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor, 2018: Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). Electron. J. Oper. Meteor., 6, 33–46, https://doi.org/10.15191/nwajom.2018.0604.

  • Seguchi, T., S. Iwasaki, M. Kamogawa, T. Ushiyama, and H. Okamoto, 2019: Observation of jumping cirrus with ground-based cameras, radiosonde, and Himawari-8. J. Meteor. Soc. Japan, 97, 615632, https://doi.org/10.2151/jmsj.2019-033.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and C. A. Doswell III, 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119, 841847, https://doi.org/10.1175/1520-0493(1991)119<0841:TACCTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. M. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. St´ástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, https://doi.org/10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Shou, Y.-X., F. Lu, H. Liu, P. Cui, S. W. Shou, and J. Liu, 2019: Satellite-based observational study of the Tibetan Plateau vortex: Features of deep convective cloud tops. Adv. Atmos. Sci., 36, 189205, https://doi.org/10.1007/s00376-018-8049-y.

    • Search Google Scholar
    • Export Citation
  • Smith, J. B., 2021: Convective hydration of the stratosphere. Science, 373, 11941195, https://doi.org/10.1126/science.abl8740.

  • Smith, J. B., and Coauthors, 2017: A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States. J. Geophys. Res. Atmos., 122, 95299554, https://doi.org/10.1002/2017JD026831.

    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: STORM Labeling in Three Dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Search Google Scholar
    • Export Citation
  • Starzec, M., G. L. Mullendore, and C. R. Homeyer, 2020: Retrievals of convective detrainment heights using ground-based radar observations. J. Geophys. Res. Atmos., 125, e2019JD031164, https://doi.org/10.1029/2019JD031164.

  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, https://doi.org/10.1016/j.atmosres.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., K.-Y. Cheng, M. Setvák, and C.-K. Wang, 2016: The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos., 121, 37293738, https://doi.org/10.1002/2015JD024111.

    • Search Google Scholar
    • Export Citation
  • Wilhelmsen, H., F. Ladstadter, T. Schmidt, and A. K. Steiner, 2020: Double tropopauses and the tropical belt connected to ENSO. Geophys. Res. Lett., 47, e2020GL089027, https://doi.org/10.1029/2020GL089027.

  • World Meteorological Organization, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., 4, 134138.

    • Search Google Scholar
    • Export Citation
  • Xian, T., and C. R. Homeyer, 2019: Global tropopause altitudes in radiosondes and reanalyses. Atmos. Chem. Phys., 19, 56615678, https://doi.org/10.5194/acp-19-5661-2019.

    • Search Google Scholar
    • Export Citation
  • Zou, L., L. Hoffmann, S. Griessbach, R. Spang, and L. Wang, 2021: Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America. Atmos. Chem. Phys., 21, 10 45710 475, https://doi.org/10.5194/acp-21-10457-2021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 592 592 23
Full Text Views 226 226 5
PDF Downloads 227 227 6

What Determines Above-Anvil Cirrus Plume Infrared Temperature?

Elisa M. MurilloaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7522-2105
and
Cameron R. HomeyeraSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Above-anvil cirrus plumes (AACPs) in midlatitude convection are important indicators of severe storms and stratospheric hydration events. Recent studies of AACPs have shown large variability in their characteristics, although many of the causes remain unknown. Notably, some AACPs appear equally as cold (or colder) than the broader storm top when compared to the more frequently observed warm AACP feature in infrared satellite imagery. To confidently identify the presence of an AACP, trained experts utilize infrared imagery to support the primary source of AACP identification, visible imagery. Thus, nighttime AACPs are often left unidentified due to unavailable visible imagery, especially for cold AACPs. In this study, 89 warm and 89 cold AACPs from 1-min GOES-16 satellite imagery coupled with ground-based radar observations and reanalysis data are comparatively evaluated to answer the following research questions: 1) Why do some AACPs exhibit a warm feature in infrared imagery while others do not, and 2) what observable storm and environment differences exist between warm and cold AACPs? It is found that cold AACPs tend to occur in tropical environments, which feature higher, cold-point tropopauses. Conversely, warm AACPs tend to occur in midlatitude environments, with lower tropopauses accompanied by an isothermal region (or tropopause inversion layer) in the lower stratosphere. Similar storm characteristics are found for warm and cold AACP events, implying that infrared temperature variability is driven by environmental differences. Together, these results suggest that cold AACPs are predominantly tropospheric phenomena, while warm AACPs reside in the lower stratosphere.

Significance Statement

The purpose of this study is to determine why some storms with a specific cloud-top feature exhibit a broad warm spot in infrared satellite imagery while others appear cold. This is important because storms with this specific cloud-top feature, whether warm or cold, produce much more severe weather than most other storms. These cloud-top features are also potentially indicative of increased water vapor in the stratosphere, which results in warming of Earth’s climate. Our results help us better understand storms that are frequently severe and suggest that the storms with cold features are less important to understanding stratospheric water vapor and climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa Murillo, murillem@ou.edu

Abstract

Above-anvil cirrus plumes (AACPs) in midlatitude convection are important indicators of severe storms and stratospheric hydration events. Recent studies of AACPs have shown large variability in their characteristics, although many of the causes remain unknown. Notably, some AACPs appear equally as cold (or colder) than the broader storm top when compared to the more frequently observed warm AACP feature in infrared satellite imagery. To confidently identify the presence of an AACP, trained experts utilize infrared imagery to support the primary source of AACP identification, visible imagery. Thus, nighttime AACPs are often left unidentified due to unavailable visible imagery, especially for cold AACPs. In this study, 89 warm and 89 cold AACPs from 1-min GOES-16 satellite imagery coupled with ground-based radar observations and reanalysis data are comparatively evaluated to answer the following research questions: 1) Why do some AACPs exhibit a warm feature in infrared imagery while others do not, and 2) what observable storm and environment differences exist between warm and cold AACPs? It is found that cold AACPs tend to occur in tropical environments, which feature higher, cold-point tropopauses. Conversely, warm AACPs tend to occur in midlatitude environments, with lower tropopauses accompanied by an isothermal region (or tropopause inversion layer) in the lower stratosphere. Similar storm characteristics are found for warm and cold AACP events, implying that infrared temperature variability is driven by environmental differences. Together, these results suggest that cold AACPs are predominantly tropospheric phenomena, while warm AACPs reside in the lower stratosphere.

Significance Statement

The purpose of this study is to determine why some storms with a specific cloud-top feature exhibit a broad warm spot in infrared satellite imagery while others appear cold. This is important because storms with this specific cloud-top feature, whether warm or cold, produce much more severe weather than most other storms. These cloud-top features are also potentially indicative of increased water vapor in the stratosphere, which results in warming of Earth’s climate. Our results help us better understand storms that are frequently severe and suggest that the storms with cold features are less important to understanding stratospheric water vapor and climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elisa Murillo, murillem@ou.edu
Save