Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and Examples

Mikhail D. Alexandrov aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Mikhail D. Alexandrov in
Current site
Google Scholar
PubMed
Close
,
Alexander Marshak cNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Alexander Marshak in
Current site
Google Scholar
PubMed
Close
,
Brian Cairns bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Brian Cairns in
Current site
Google Scholar
PubMed
Close
, and
Andrew S. Ackerman bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Andrew S. Ackerman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present a generalization of the binary-value Markovian model previously used for statistical characterization of cloud masks to a continuous-value model describing 1D fields of cloud optical thickness (COT). This model has simple functional expressions and is specified by four parameters: the cloud fraction, the autocorrelation (scale) length, and the two parameters of the normalized probability density function of (nonzero) COT values (this PDF is assumed to have gamma-distribution form). Cloud masks derived from this model by separation between the values above and below some threshold in COT appear to have the same statistical properties as in binary-value model described in our previous publications. We demonstrate the ability of our model to generate examples of various cloud-field types by using it to statistically imitate actual cloud observations made by the Research Scanning Polarimeter (RSP) during two field experiments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikhail D. Alexandrov, mda14@columbia.edu

Abstract

We present a generalization of the binary-value Markovian model previously used for statistical characterization of cloud masks to a continuous-value model describing 1D fields of cloud optical thickness (COT). This model has simple functional expressions and is specified by four parameters: the cloud fraction, the autocorrelation (scale) length, and the two parameters of the normalized probability density function of (nonzero) COT values (this PDF is assumed to have gamma-distribution form). Cloud masks derived from this model by separation between the values above and below some threshold in COT appear to have the same statistical properties as in binary-value model described in our previous publications. We demonstrate the ability of our model to generate examples of various cloud-field types by using it to statistically imitate actual cloud observations made by the Research Scanning Polarimeter (RSP) during two field experiments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikhail D. Alexandrov, mda14@columbia.edu
Save
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and A. Marshak, 2017: Cellular statistical models of broken cloud fields. Part III: Markovian properties. J. Atmos. Sci., 74, 29212935, https://doi.org/10.1175/JAS-D-17-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and A. Marshak, 2019: Cellular statistical models of broken cloud fields. Part IV: Effects of pixel size on idealized satellite observations. J. Atmos. Sci., 76, 13291348, https://doi.org/10.1175/JAS-D-18-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. Marshak, B. Cairns, A. A. Lacis, and B. E. Carlson, 2004: Scaling properties of aerosol optical thickness retrieved from ground-based measurements. J. Atmos. Sci., 61, 10241039, https://doi.org/10.1175/1520-0469(2004)061<1024:SPOAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. Marshak, and A. S. Ackerman, 2010a: Cellular statistical models of broken cloud fields. Part I: Theory. J. Atmos. Sci., 67, 21252151, https://doi.org/10.1175/2010JAS3364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. S. Ackerman, and A. Marshak, 2010b: Cellular statistical models of broken cloud fields. Part II: Comparison with a dynamical model and statistics of diverse ensembles. J. Atmos. Sci., 67, 21522170, https://doi.org/10.1175/2010JAS3365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, 2012: Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the Research Scanning Polarimeter. Remote Sens. Environ., 125, 92111, https://doi.org/10.1016/j.rse.2012.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2015: Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX). Remote Sens. Environ., 169, 2036, https://doi.org/10.1016/j.rse.2015.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., B. Cairns, C. Emde, A. S. Ackerman, M. Ottaviani, and A. P. Wasilewski, 2016a: Derivation of cumulus cloud dimensions and shape from the airborne measurements by the Research Scanning Polarimeter. Remote Sens. Environ., 177, 144152, https://doi.org/10.1016/j.rse.2016.02.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., I. V. Geogdzhayev, K. Tsigaridis, A. Marshak, R. C. Levy, and B. Cairns, 2016b: New statistical model for variability of aerosol optical thickness: Theory and application to MODIS data over ocean. J. Atmos. Sci., 73, 821837, https://doi.org/10.1175/JAS-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2016c: Polarized view of supercooled liquid water clouds. Remote Sens. Environ., 181, 96110, https://doi.org/10.1016/j.rse.2016.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2018: Retrievals of cloud droplet size from the research scanning polarimeter data: Validation using in situ measurements. Remote Sens. Environ., 210, 7695, https://doi.org/10.1016/j.rse.2018.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astin, I., and B. G. Latter, 1998: A case for exponential cloud fields? J. Appl. Meteor., 37, 13751382, https://doi.org/10.1175/1520-0450(1998)037<1375:ACFECF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303, https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Weilicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21, 33443358, https://doi.org/10.1175/2007JCLI2266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., 1994: Bounded cascade clouds: Albedo and effective thickness. Nonlinear Processes Geophys., 1, 156167, https://doi.org/10.5194/npg-1-156-1994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272, https://doi.org/10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 80558072, https://doi.org/10.1029/94JD00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorff, H., H. Konow, and F. Ament, 2022: Horizontal geometry of trade wind cumuli—Aircraft observations from a shortwave infrared imager versus a radar profiler. Atmos. Meas. Tech., 15, 36413661, https://doi.org/10.5194/amt-15-3641-2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibe, O., 2013 : Markov Processes for Stochastic Modeling. 2nd ed. Elsevier, 515 pp.

    • Crossref
    • Export Citation
  • Joseph, J. H., and R. F. Cahalan, 1990: Nearest neighbor spacing of fair weather cumulus clouds. J. Appl. Meteor. Climatol., 29, 793805, https://doi.org/10.1175/1520-0450(1990)029<0793:NNSOFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E., 2003: Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach. J. Quant. Spectrosc. Radiat. Transfer, 77, 373393, https://doi.org/10.1016/S0022-4073(02)00170-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E., and D. Veron, 2011: Stochastic radiative transfer in Markovian mixtures: Past, present, and future. J. Quant. Spectrosc. Radiat. Transfer, 112, 566576, https://doi.org/10.1016/j.jqsrt.2010.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubank, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., L. Oreopoulos, G. Feingold, L. A. Remer, and O. Altaratz, 2008: How small is a small cloud? Atmos. Chem. Phys., 8, 38553864, https://doi.org/10.5194/acp-8-3855-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, V. G., 2011 : Introduction to Modeling and Analysis of Stochastic Systems. 2nd ed. Springer, 326 pp.

    • Crossref
    • Export Citation
  • Lane, D. E., K. Goris, and R. C. J. Somerville, 2002: Radiative transfer through broken clouds: Observations and model validation. J. Climate, 15, 29212933, https://doi.org/10.1175/1520-0442(2002)015<2921:RTTBCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermore, C. D., J. Wong, and G. C. Pomraning, 1988: Renewal theory for transport processes in binary statistical mixtures. J. Math. Phys., 29, 9951004, https://doi.org/10.1063/1.527997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2012: Haar wavelets, fluctuations and structure functions: Convenient choices for geophysics. Nonlinear Processes Geophys., 19, 513527, https://doi.org/10.5194/npg-19-513-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, R. F. Cahalan, and W. J. Wiscombe, 1993: Multi-singular and multi-affine properties of bounded cascade models. Fractals, 1, 702710, https://doi.org/10.1142/S0218348X93000733.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, R. F. Cahalan, and W. J. Wiscombe, 1994: Bounded cascade models as non-stationary multifractals. Phys. Rev., 49, 5569, https://doi.org/10.1103/PhysRevE.49.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and K. R. Sreenivasan, 1987: Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett., 59, 14241427, https://doi.org/10.1103/PhysRevLett.59.1424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morf, H., 1998: The stochastic two-state solar irradiance model (STSIM). Sol. Energy, 62, 101112, https://doi.org/10.1016/S0038-092X(98)00004-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morf, H., 2011: The stochastic two-state cloud cover model STSCCM. Sol. Energy, 85, 985999, https://doi.org/10.1016/j.solener.2011.02.015.

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. A. McFarlane, and S. A. Klein, 1999: Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellite. J. Geophys. Res., 104, 61836191, https://doi.org/10.1029/1998JD200125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plank, V. G., 1969: The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8, 4667, https://doi.org/10.1175/1520-0450(1969)008<0046:TSDOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomraning, G. C., 1989: Statistics, renewal theory and particle transport. J. Quant. Spectrosc. Radiat. Transfer, 42, 279293, https://doi.org/10.1016/0022-4073(89)90074-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912, https://doi.org/10.1175/1520-0469(2003)060<1895:SDADPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, M., E. Bierwirth, A. Ehrlich, E. Jäkel, F. Werner, and M. Wendisch, 2017: Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airborne spectral imaging. Atmos. Chem. Phys., 17, 23592372, https://doi.org/10.5194/acp-17-2359-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1987: Physical modeling and analysis of rain clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92, 96939714, https://doi.org/10.1029/JD092iD08p09693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seelig, T., H. Deneke, J. Quaas, and M. Tesche, 2021 : Life cycle of shallow marine cumulus clouds from geostationary satellite observations. J. Geophys. Res. Atmos., 126, e2021JD035577, https://doi.org/10.1029/2021JD035577.

    • Crossref
    • Export Citation
  • Sinclair, K., B. van Diedenhoven, B. Cairns, J. Yorks, A. Wasilewski, and M. McGill, 2017: Remote sensing of multiple cloud layer heights using multi-angular measurements. Atmos. Meas. Tech., 10, 23612375, https://doi.org/10.5194/amt-10-2361-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, K., B. van Diedenhoven, B. Cairns, M. Alexandrov, R. Moore, E. Crosbie, and L. Ziemba, 2019: Polarimetric retrievals of cloud droplet number concentrations. Remote Sens. Environ., 228, 227240, https://doi.org/10.1016/j.rse.2019.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891, https://doi.org/10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2018: Satellite observations of cloud-related variations in aerosol properties. Atmosphere, 9, 430, https://doi.org/10.3390/atmos9110430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., A. Marshak, and T. F. Eck, 2017: Observation-based study on aerosol optical depth and particle size in partly cloudy regions. J. Geophys. Res. Atmos., 122, 10 01310 024, https://doi.org/10.1002/2017JD027028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and Coauthors, 2012: RACORO extended-term aircraft observations of boundary layer clouds. Bull. Amer. Meteor. Soc., 93, 861878, https://doi.org/10.1175/BAMS-D-11-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Appl. Meteor. Climatol., 25, 261276, https://doi.org/10.1175/1520-0450(1986)025<0261:CCPDUL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, https://doi.org/10.1175/2011JCLI4056.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., A. Marshak, and G. Wen, 2019: Cloud edge properties measured by the ARM shortwave spectrometer over ocean and land. J. Geophys. Res. Atmos., 124, 87078721, https://doi.org/10.1029/2019JD030622.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 496 167 11
Full Text Views 217 71 2
PDF Downloads 218 81 1