• Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) field campaign. Bull. Amer. Meteor. Soc., 96, 12811309, https://doi.org/10.1175/BAMS-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. Fifth Assembly, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156180.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1976: The thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts. J. Atmos. Sci., 33, 10081020, https://doi.org/10.1175/1520-0469(1976)033<1008:TTTOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls, 1995: Cloud venting—A review and some new global annual estimates. Earth-Sci. Rev., 39, 169206, https://doi.org/10.1016/0012-8252(95)00007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. H. Bryan, and S. C. van den Heever, 2010: Storm and Cloud Dynamics. 2nd ed. Academic Press, 820 pp.

  • Dauhut, T., J.-P. Chaboureau, J. Escobar, and P. Mascart, 2015: Large‐eddy simulations of Hector the Convector making the stratosphere wetter. Atmos. Sci. Lett., 16, 135140, https://doi.org/10.1002/asl2.534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342, https://doi.org/10.1175/1520-0469(1992)049<2325:POCGOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how hot towers fuel the Hadley cell: An observational and modeling study of line-organized convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66, 27302746, https://doi.org/10.1175/2009JAS3017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. J. Zipser, M. A. LeMone, J. M. Straka, and J. M. Simpson, 2012: Tropical oceanic hot towers: Need they be undilute to transport energy from the boundary layer to the upper troposphere effectively? An answer based on trajectory analysis of a simulation of a TOGA COARE convective system. J. Atmos. Sci., 69, 195213, https://doi.org/10.1175/JAS-D-11-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Grant, L. D., and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., S. C. van den Heever, Z. S. Haddad, J. Bukowski, P. J. Marinescu, R. L. Storer, D. J. Posselt, and G. L. Stephens, 2021: Namelists Associated with “A Linear Relationship Between Vertical Velocity and Condensation Processes in Deep Convection.” Colorado State University Libraries, https://doi.org/10.25675/10217/233963.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., O. O. Sy, S. Hristova-Veleva, and G. L. Stephens, 2017: Derived observations from frequently sampled microwave measurements of precipitation—Part I: Relations to atmospheric thermodynamics. IEEE Trans. Geosci. Remote Sens., 55, 34413453, https://doi.org/10.1109/TGRS.2017.2671598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikenfeld, M., B. White, L. Labbouz, and P. Stier, 2019: Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys., 19, 26012627, https://doi.org/10.5194/acp-19-2601-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., S. C. van den Heever, and L. D. Grant, 2018: The life cycles of ice crystals detrained from the tops of deep convection. J. Geophys. Res. Atmos., 123, 96249634, https://doi.org/10.1029/2018JD028832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett., 37, L09804, https://doi.org/10.1029/2010GL042904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, and S. M. Kreidenweis, 2016: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. J. Geophys. Res. Atmos., 121, 79137935, https://doi.org/10.1002/2016JD024762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, S. M. Kreidenweis, and P. J. DeMott, 2017: The microphysical roles of lower-tropospheric versus midtropospheric aerosol particles in mature-stage MCS precipitation. J. Atmos. Sci., 74, 36573678, https://doi.org/10.1175/JAS-D-16-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., and Coauthors, 2021: Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts—A multimodel assessment. J. Atmos. Sci., 78, 11471172, https://doi.org/10.1175/JAS-D-20-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, C. J., and S. C. van den Heever, 2014: Latent heating and mixing due to entrainment in tropical deep convection. J. Atmos. Sci., 71, 816832, https://doi.org/10.1175/JAS-D-13-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, https://doi.org/10.1256/003590002320603502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci., 75, 29833009, https://doi.org/10.1175/JAS-D-17-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815, https://doi.org/10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 77857790, https://doi.org/10.1002/2014GL061921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. M., S. C. Heever, A. L. Igel, L. D. Grant, J. S. Johnson, S. M. Saleeby, S. D. Miller, and J. S. Reid, 2020: Environmental controls on tropical sea breeze convection and resulting aerosol redistribution. J. Geophys. Res. Atmos., 125, e2019JD031699, https://doi.org/10.1029/2019JD031699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. Korolev, and A. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793, https://doi.org/10.1175/JAS-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., S. van den Heever, G. Stephens, and M. R. Igel, 2012: Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. J. Climate, 25, 557571, https://doi.org/10.1175/2011JCLI4167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080, https://doi.org/10.5194/acp-9-7067-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Elsevier, 304 pp.

  • Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proc. Natl. Acad. Sci. USA, 115, 45774582, https://doi.org/10.1073/pnas.1719842115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Chem., 5, 5986, https://doi.org/10.1071/CH9520059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2020: A distributed small satellite approach for measuring convective transports in the Earth’s atmosphere. IEEE Trans. Geosci. Remote Sens., 58, 413, https://doi.org/10.1109/TGRS.2019.2918090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and D. J. Posselt, 2019: Environmental impacts on the flux of mass through deep convection. Quart. J. Roy. Meteor. Soc., 145, 38323845, https://doi.org/10.1002/qj.3669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sy, O. O., Z. S. Haddad, G. L. Stephens, and S. Hristova-Veleva, 2017: Derived observations from frequently sampled microwave measurements of precipitation. Part II: Sensitivity to atmospheric variables and instrument parameters. IEEE Trans. Geosci. Remote Sens., 55, 28982912, https://doi.org/10.1109/TGRS.2017.2656061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., L. D. Grant, G. L. Stephens, Z. S. Haddad, R. L. Storer, O. O. Sy, and D. J. Posselt, 2018: The challenges of representing vertical motion in numerical models. Proc. SPIE, 10782, 1078204, https://doi.org/10.1117/12.2501584.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and J. Chen, 2019: Efficient determination of cloud drop number concentration near the cloud base with parameterization based on fundamental theory and parcel model simulations. J. Geophys. Res. Atmos., 124, 64676483, https://doi.org/10.1029/2018JD029648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 4958.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 576 405 46
Full Text Views 509 391 34
PDF Downloads 342 234 12

A Linear Relationship between Vertical Velocity and Condensation Processes in Deep Convection

Leah D. GrantaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Leah D. Grant in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3510-2141
,
Susan C. van den HeeveraDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
,
Ziad S. HaddadbJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Ziad S. Haddad in
Current site
Google Scholar
PubMed
Close
,
Jennie BukowskiaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jennie Bukowski in
Current site
Google Scholar
PubMed
Close
,
Peter J. MarinescuaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado
cCooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

Search for other papers by Peter J. Marinescu in
Current site
Google Scholar
PubMed
Close
,
Rachel L. StorerbJet Propulsion Laboratory, California Institute of Technology, Pasadena, California
dJoint Institute for Regional Earth System Science and Engineering, University of California Los Angeles, Los Angeles, California

Search for other papers by Rachel L. Storer in
Current site
Google Scholar
PubMed
Close
,
Derek J. PosseltbJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
, and
Graeme L. StephensbJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Graeme L. Stephens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertical velocities and microphysical processes within deep convection are intricately linked, having wide-ranging impacts on water and mass vertical transport, severe weather, extreme precipitation, and the global circulation. The goal of this research is to investigate the functional form of the relationship between vertical velocity (w) and microphysical processes that convert water vapor into condensed water (M) in deep convection. We examine an ensemble of high-resolution simulations spanning a range of tropical and midlatitude environments, a variety of convective organizational modes, and different model platforms and microphysics schemes. The results demonstrate that the relationship between w and M is robustly linear, with the slope of the linear fit being primarily a function of temperature and secondarily a function of supersaturation. The R2 of the linear fit is generally above 0.6 except near the freezing and homogeneous freezing levels. The linear fit is examined both as a function of local in-cloud temperature and environmental temperature. The results for in-cloud temperature are more consistent across the simulation suite, although environmental temperatures are more useful when considering potential observational applications. The linear relationship between w and M is substituted into the condensate tendency equation and rearranged to form a diagnostic equation for w. The performance of the diagnostic equation is tested in several simulations, and it is found to diagnose the storm-scale updraft speeds to within 1 m s−1 throughout the upper half of the clouds. Potential applications of the linear relationship between w and M and the diagnostic w equation are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leah D. Grant, leah.grant@colostate.edu

Abstract

Vertical velocities and microphysical processes within deep convection are intricately linked, having wide-ranging impacts on water and mass vertical transport, severe weather, extreme precipitation, and the global circulation. The goal of this research is to investigate the functional form of the relationship between vertical velocity (w) and microphysical processes that convert water vapor into condensed water (M) in deep convection. We examine an ensemble of high-resolution simulations spanning a range of tropical and midlatitude environments, a variety of convective organizational modes, and different model platforms and microphysics schemes. The results demonstrate that the relationship between w and M is robustly linear, with the slope of the linear fit being primarily a function of temperature and secondarily a function of supersaturation. The R2 of the linear fit is generally above 0.6 except near the freezing and homogeneous freezing levels. The linear fit is examined both as a function of local in-cloud temperature and environmental temperature. The results for in-cloud temperature are more consistent across the simulation suite, although environmental temperatures are more useful when considering potential observational applications. The linear relationship between w and M is substituted into the condensate tendency equation and rearranged to form a diagnostic equation for w. The performance of the diagnostic equation is tested in several simulations, and it is found to diagnose the storm-scale updraft speeds to within 1 m s−1 throughout the upper half of the clouds. Potential applications of the linear relationship between w and M and the diagnostic w equation are discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leah D. Grant, leah.grant@colostate.edu
Save