• Abma, D., T. Heus, and J. P. Mellado, 2013: Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci., 70, 20882102, https://doi.org/10.1175/JAS-D-12-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964, https://doi.org/10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., S. K. Krueger, and M. Khairoutdinov, 2010: Assumed probability density functions for shallow and deep convection. J. Adv. Model. Earth Syst., 2 (4), https://doi.org/10.3894/JAMES.2010.2.10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. Jonker, W. A. Nawara, and A. P. Siebesma, 2014: On the deceiving aspects of mixing diagrams of deep cumulus convection. J. Atmos. Sci., 71, 5668, https://doi.org/10.1175/JAS-D-13-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55, 34403455, https://doi.org/10.1175/1520-0469(1998)055<3440:EADINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, https://doi.org/10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, https://doi.org/10.1016/0021-9991(84)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, 20452060, https://doi.org/10.1175/JAS3941.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, C. B., J. C. Hunt, I. Eames, and J. Westerweel, 2014: Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech., 46, 567590, https://doi.org/10.1146/annurev-fluid-010313-141357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503506, https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1981: A similarity theory for unsaturated downdrafts within clouds. J. Atmos. Sci., 38, 15411557, https://doi.org/10.1175/1520-0469(1981)038<1541:ASTFUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Gerber, H., G. Frick, S. Malinowski, J. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459, https://doi.org/10.1175/JAS-3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2014: Downdrafts in the near cloud environment of deep convective updrafts. J. Adv. Model. Earth Syst., 6, 18, https://doi.org/10.1002/2013MS000261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorska, A., S. Malinowski, S. Blonski, J. Fugal, T. Kowalewski, P. Korczyk, and W. Kumala, 2014: Entrainment in laboratory analogs of cumulus and stratocumulus clouds tops. 14th Conf. on Cloud Physics, Boston, MA, Amer. Meteor. Soc., 87, https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250260.html.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546, https://doi.org/10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993a: Cloud–environment interface instability: Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573, https://doi.org/10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993b: Cloud–environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 50, 38213828, https://doi.org/10.1175/1520-0469(1993)050<3821:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K., M. Whitall, A. Stirling, and P. Clark, 2019: Modifications to the representation of subgrid mixing in kilometre-scale versions of the Unified Model. Quart. J. Roy. Meteor. Soc., 145, 33613375, https://doi.org/10.1002/qj.3624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., 2017: Entrainment versus dilution in tropical deep convection. J. Atmos. Sci., 74, 37253747, https://doi.org/10.1175/JAS-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, https://doi.org/10.1175/2007JAS2322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., G. Van Dijk, H. J. Jonker, and H. E. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, https://doi.org/10.1175/2008JAS2572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., H. Siebert, J. Schumacher, T. Riechelmann, J. Katzwinkel, B. Kumar, P. Götzfried, and S. Raasch, 2014: Entrainment and mixing at the interface of shallow cumulus clouds: Results from a combination of observations and simulations. Meteor. Z., 23, 349368, https://doi.org/10.1127/0941-2948/2014/0597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, P., 1990: Observations of cumulus cloud entrainment. Atmos. Res., 25, 105127, https://doi.org/10.1016/0169-8095(90)90008-Z.

  • Jonker, H. J., T. Heus, and P. P. Sullivan, 2008: A refined view of vertical mass transport by cumulus convection. Geophys. Res. Lett., 35, L07810, https://doi.org/10.1029/2007GL032606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, T. Heus, and R. A. Shaw, 2014: Measurements of turbulent mixing and subsiding shells in trade wind cumuli. J. Atmos. Sci., 71, 28102822, https://doi.org/10.1175/JAS-D-13-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and T. L. Clark, 1985: Dynamics of the cloud–environment interface and entrainment in small cumuli: Two-dimensional simulations in the absence of ambient shear. J. Atmos. Sci., 42, 26212642, https://doi.org/10.1175/1520-0469(1985)042<2621:DOTCEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Chatterjee, and M. K. Verma, 2014: Energy spectrum of buoyancy-driven turbulence. Phys. Rev. E, 90, 023016, https://doi.org/10.1103/PhysRevE.90.023016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B., F. Janetzko, J. Schumacher, and R. A. Shaw, 2012: Extreme responses of a coupled scalar–particle system during turbulent mixing. New J. Phys., 14, 115020, https://doi.org/10.1088/1367-2630/14/11/115020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B., J. Schumacher, and R. A. Shaw, 2013: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361376, https://doi.org/10.1007/s00162-012-0272-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B., S. Bera, T. V. Prabha, and W. W. Grabowski, 2017: Cloud-edge mixing: Direct numerical simulation and observations in Indian monsoon clouds. J. Adv. Model. Earth Syst., 9, 332353, https://doi.org/10.1002/2016MS000731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 19291969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1997: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, https://doi.org/10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., E. Jo, L. R. Allen, B. N. Engelsen, and R. J. Trapp, 2021: Entrainment in a simulated supercell thunderstorm. Part I: The evolution of different entrainment mechanisms and their dilutive effects. J. Atmos. Sci., 78, 27252740, https://doi.org/10.1175/JAS-D-20-0223.1.

    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 10271043, https://doi.org/10.1175/1520-0469(1997)054<1027:TMEPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54, 10441053, https://doi.org/10.1175/1520-0469(1997)054<1044:TMEPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., J. Wang, R. C. Flagan, J. H. Seinfeld, A. Freedman, R. A. McClatchey, and H. H. Jonsson, 2003: Analysis of humidity halos around trade wind cumulus clouds. J. Atmos. Sci., 60, 10411059, https://doi.org/10.1175/1520-0469(2003)60<1041:AOHHAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, https://doi.org/10.1175/2011MWR3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 2014: A closure for updraft–downdraft representation of subgrid-scale fluxes in cloud-resolving models. Mon. Wea. Rev., 142, 703715, https://doi.org/10.1175/MWR-D-13-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, V., T. Heus, and M. Van Reeuwijk, 2020: Dynamics of subsiding shells in actively growing clouds with vertical updrafts. J. Atmos. Sci., 77, 13531369, https://doi.org/10.1175/JAS-D-19-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and Z. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956, https://doi.org/10.1175/JAS-D-11-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 24672478, https://doi.org/10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., T. Heus, and P. Gentine, 2017: Role of convective mixing and evaporative cooling in shallow convection. J. Geophys. Res. Atmos., 122, 53515363, https://doi.org/10.1002/2017JD026466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K. D., and P. V. Hobbs, 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159174, https://doi.org/10.1175/1520-0469(1996)053<0159:IOICCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217220.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., and G. Sommeria, 1981: Méthode de représentation de la turbulence d’échelle inférieure à la maille pour un modèle tri-dimensionnel de convection nuageuse. Bound.-Layer Meteor., 21, 509530, https://doi.org/10.1007/BF02033598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., and G. Sommeria, 1986: Three-dimensional simulation of a convective storm: Sensitivity studies on subgrid parameterization and spatial resolution. J. Atmos. Sci., 43, 26192635, https://doi.org/10.1175/1520-0469(1986)043<2619:TDSOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, https://doi.org/10.1002/qj.2025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodts, S. M., P. G. Duynkerke, and H. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912, https://doi.org/10.1175/1520-0469(2003)060<1895:SDADPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, https://doi.org/10.1175/2009JAS3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc., 116, 705739, https://doi.org/10.1002/qj.49711649309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10, 381389, https://doi.org/10.3402/tellusa.v10i3.9243.

  • Squires, P., and J. Turner, 1962: An entraining jet model for cumulo-nimbus updraughts. Tellus, 14, 422434, https://doi.org/10.3402/tellusa.v14i4.9569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, C., D. Ricard, C. Lac, and A. Verrelle, 2019: Evaluation of turbulence parametrizations in convective clouds and their environment based on a large-eddy simulation. Quart. J. Roy. Meteor. Soc., 145, 31953217, https://doi.org/10.1002/qj.3614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verma, M. K., 2019: Contrasting turbulence in stably stratified flows and thermal convection. Phys. Scr., 94, 064003, http://doi.org/10.1088/1402-4896/ab022a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2017: Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Mon. Wea. Rev., 145, 39473967, https://doi.org/10.1175/MWR-D-16-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villefranque, N., R. Fournier, F. Couvreux, S. Blanco, C. Cornet, V. Eymet, V. Forest, and J.-M. Tregan, 2019: A path-tracing Monte Carlo library for 3-D radiative transfer in highly resolved cloudy atmospheres. J. Adv. Model. Earth Syst., 11, 24492473, https://doi.org/10.1029/2018MS001602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Geerts, 2015: Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations. J. Appl. Meteor. Climatol., 54, 20092026, https://doi.org/10.1175/JAMC-D-14-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, https://doi.org/10.1175/JAS3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 396 380 31
Full Text Views 179 176 11
PDF Downloads 214 211 15

Dynamics of the Cloud–Environment Interface and Turbulence Effects in an LES of a Growing Cumulus Congestus

View More View Less
  • 1 aCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Restricted access

Abstract

A giga-large-eddy simulation of a cumulus congestus has been performed with a 5-m resolution to examine the fine-scale dynamics and mixing on its edges. At 5-m resolution, the dynamical production of subgrid turbulence clearly dominates over the thermal production, whereas the situation is reversed for resolved turbulence, the tipping point occurring near the 250-m scale. For cloud dynamics, the toroidal circulation already obtained in previous observational and numerical studies remains, with a strong signature on the resolved turbulent fluxes, the most important feature for the exchanges between the cloud and its environment even though numerous smaller eddies are also well resolved. The environment compensates for the upward mass flux through a large-scale compensating subsidence and the so-called subsiding shell composed of cloud-edge downdrafts, both having a significant contribution. A partition is used to characterize the dynamics, buoyancy, and turbulence of the inner and outer edges of the cloud, the cloud interior, and the far environment. On the edges of the cloud, downdrafts caused by the eddies and by evaporative cooling effects coexist with a buoyancy reversal while the cloud interior is mostly rising and positively buoyant. An alternative simulation in which evaporative cooling is suppressed indicates that this process reinforces the downdrafts near the edges of the cloud and causes a general decrease of the convective circulation. Evaporative cooling also has an impact on the buoyancy reversal and on the fate of the engulfed air inside the cloud.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Didier Ricard, didier.ricard@meteo.fr

Abstract

A giga-large-eddy simulation of a cumulus congestus has been performed with a 5-m resolution to examine the fine-scale dynamics and mixing on its edges. At 5-m resolution, the dynamical production of subgrid turbulence clearly dominates over the thermal production, whereas the situation is reversed for resolved turbulence, the tipping point occurring near the 250-m scale. For cloud dynamics, the toroidal circulation already obtained in previous observational and numerical studies remains, with a strong signature on the resolved turbulent fluxes, the most important feature for the exchanges between the cloud and its environment even though numerous smaller eddies are also well resolved. The environment compensates for the upward mass flux through a large-scale compensating subsidence and the so-called subsiding shell composed of cloud-edge downdrafts, both having a significant contribution. A partition is used to characterize the dynamics, buoyancy, and turbulence of the inner and outer edges of the cloud, the cloud interior, and the far environment. On the edges of the cloud, downdrafts caused by the eddies and by evaporative cooling effects coexist with a buoyancy reversal while the cloud interior is mostly rising and positively buoyant. An alternative simulation in which evaporative cooling is suppressed indicates that this process reinforces the downdrafts near the edges of the cloud and causes a general decrease of the convective circulation. Evaporative cooling also has an impact on the buoyancy reversal and on the fate of the engulfed air inside the cloud.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Didier Ricard, didier.ricard@meteo.fr
Save