• Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

    • Search Google Scholar
    • Export Citation
  • Bokhove, O., 1996 On: balanced models in geophysical fluid dynamics: Slowest invariant manifolds, slaving principles, and Hamiltonian structure. Ph.D. dissertation, University of Toronto, 186 pp.

  • Bokhove, O., 2002a: Balanced models in geophysical fluid dynamics: Hamiltonian formulation, constraints and formal stability. Geometric Methods and Models, J. Norbury and I. Roulstone, Eds., Vol. II, Large-Scale Atmosphere-Ocean Dynamics, Cambridge University Press, 1–63.

  • Bokhove, O., 2002b: Eulerian variational principles for stratified hydrostatic equations. J. Atmos. Sci., 59, 16191628, https://doi.org/10.1175/1520-0469(2002)059<1619:EVPFSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bokhove, O., 2007: Constrained 1.5-layer Hamiltonian toy models for stratospheric dynamics. University of Twente Rep., 23 pp., https://eartharxiv.org/repository/view/3122/.

  • Bokhove, O., and M. Oliver, 2009: A parcel formulation of Hamiltonian layer models. Geophys. Astrophys. Fluid Dyn., 103, 423442, https://doi.org/10.1080/03091920903286444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantarello, L., O. Bokhove, and S. Tobias, 2022: An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part I: Model dynamics. J. Atmos. Sci., 79, 859873, https://doi.org/10.1175/JAS-D-21-0022.1.

    • Crossref
    • Export Citation
  • Dirac, P. A. M., 1958: Generalized Hamiltonian dynamics. Proc. Roy. Soc. London, 246A, 326332, https://doi.org/10.1098/rspa.1958.0141.

    • Search Google Scholar
    • Export Citation
  • Dirac, P. A. M., 1964: Lectures on Quantum Mechanics. Yeshiva University, 96 pp.

  • Djurić, D., and M. S. Damiani Jr., 1980: On the formation of the low-level jet over Texas. Mon. Wea. Rev., 108, 18541865, https://doi.org/10.1175/1520-0493(1980)108<1854:OTFOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, T., O. Bokhove, and S. Tobias, 2017: Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus, 69A, 1369332, https://doi.org/10.1080/16000870.2017.1369332.

    • Crossref
    • Export Citation
  • Ladwig, D. S., 1980: Cyclogenesis and the low-level jet over the southern Great Plains. Air Force Institute of Technology Tech. Rep., 62 pp.

  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, https://doi.org/10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1993: Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn., 70, 85111, https://doi.org/10.1080/03091929308203588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salman, H., L. Kuznetsov, C. Jones, and K. Ide, 2006: A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev., 134, 10811101, https://doi.org/10.1175/MWR3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid Mech., 132, 431444, https://doi.org/10.1017/S0022112083001706.

  • Salmon, R., 1985: New equations for nearly geostrophic flow. J. Fluid Mech., 153, 461477, https://doi.org/10.1017/S0022112085001343.

  • Salmon, R., 1988: Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech., 20, 225256, https://doi.org/10.1146/annurev.fl.20.010188.001301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32, 287338, https://doi.org/10.1016/S0065-2687%2808%2960429-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T., 1993: A unified theory of available potential energy. Atmos.-Ocean, 31, 126, https://doi.org/10.1080/07055900.1993.9649460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, and N. K. Nichols, 2013: Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model. Tellus, 65A, 19546, https://doi.org/10.3402/tellusa.v65i0.19546.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

    • Crossref
    • Export Citation
  • Van Kampen, N. G., 1985: Elimination of fast variables. Phys. Rep., 124, 69160, https://doi.org/10.1016/0370-1573(85)90002-X.

  • Vanneste, J., and O. Bokhove, 2002: Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models. Physica D, 164, 152167, https://doi.org/10.1016/S0167-2789(02)00375-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Würsch, M., and G. C. Craig, 2014: A simple dynamical model of cumulus convection for data assimilation research. Meteor. Z., 23, 483490, https://doi.org/10.1127/0941-2948/2014/0492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., N. Gustafsson, and E. Källén, 2004: Dynamical response of equatorial waves in four-dimensional variational data assimilation. Tellus, 56A, 2946, https://doi.org/10.1111/j.1600-0870.2004.00036.x.

    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 2007: Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances. Elsevier, 400 pp.

  • Zeitlin, V., 2018: Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models. Oxford University Press, 496 pp.

All Time Past Year Past 30 Days
Abstract Views 76 76 9
Full Text Views 12 12 2
PDF Downloads 18 18 4

An Idealized 1½-Layer Isentropic Model with Convection and Precipitation for Satellite Data Assimilation Research. Part II: Model Derivation

View More View Less
  • 1 aSchool of Mathematics, University of Leeds, Leeds, United Kingdom
Restricted access

Abstract

In this Part II paper we present a fully consistent analytical derivation of the “dry” isentropic 1½-layer shallow-water model described and used in Part I of this study, with no convection and precipitation. The mathematical derivation presented here is based on a combined asymptotic and slaved Hamiltonian analysis, which is used to resolve an apparent inconsistency arising from the application of a rigid-lid approximation to an isentropic two-layer shallow-water model. Real observations based on radiosonde data are used to justify the scaling assumptions used throughout the paper, as well as in Part I. Eventually, a fully consistent isentropic 1½-layer model emerges from imposing fluid at rest (v1 = 0) and zero Montgomery potential (M1 = 0) in the upper layer of an isentropic two-layer model.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Onno Bokhove, o.bokhove@leeds.ac.uk; Luca Cantarello, mmlca@leeds.ac.uk

Abstract

In this Part II paper we present a fully consistent analytical derivation of the “dry” isentropic 1½-layer shallow-water model described and used in Part I of this study, with no convection and precipitation. The mathematical derivation presented here is based on a combined asymptotic and slaved Hamiltonian analysis, which is used to resolve an apparent inconsistency arising from the application of a rigid-lid approximation to an isentropic two-layer shallow-water model. Real observations based on radiosonde data are used to justify the scaling assumptions used throughout the paper, as well as in Part I. Eventually, a fully consistent isentropic 1½-layer model emerges from imposing fluid at rest (v1 = 0) and zero Montgomery potential (M1 = 0) in the upper layer of an isentropic two-layer model.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Onno Bokhove, o.bokhove@leeds.ac.uk; Luca Cantarello, mmlca@leeds.ac.uk
Save