• Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

    • Search Google Scholar
    • Export Citation
  • Bokhove, O., 1996 On: balanced models in geophysical fluid dynamics: Slowest invariant manifolds, slaving principles, and Hamiltonian structure. Ph.D. dissertation, University of Toronto, 186 pp.

  • Bokhove, O., 2002a: Balanced models in geophysical fluid dynamics: Hamiltonian formulation, constraints and formal stability. Geometric Methods and Models, J. Norbury and I. Roulstone, Eds., Vol. II, Large-Scale Atmosphere-Ocean Dynamics, Cambridge University Press, 1–63.

  • Bokhove, O., 2002b: Eulerian variational principles for stratified hydrostatic equations. J. Atmos. Sci., 59, 16191628, https://doi.org/10.1175/1520-0469(2002)059<1619:EVPFSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bokhove, O., 2007: Constrained 1.5-layer Hamiltonian toy models for stratospheric dynamics. University of Twente Rep., 23 pp., https://eartharxiv.org/repository/view/3122/.

  • Bokhove, O., and M. Oliver, 2009: A parcel formulation of Hamiltonian layer models. Geophys. Astrophys. Fluid Dyn., 103, 423442, https://doi.org/10.1080/03091920903286444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantarello, L., O. Bokhove, and S. Tobias, 2022: An idealized 1½-layer isentropic model with convection and precipitation for satellite data assimilation research. Part I: Model dynamics. J. Atmos. Sci., 79, 859873, https://doi.org/10.1175/JAS-D-21-0022.1.

    • Crossref
    • Export Citation
  • Dirac, P. A. M., 1958: Generalized Hamiltonian dynamics. Proc. Roy. Soc. London, 246A, 326332, https://doi.org/10.1098/rspa.1958.0141.

    • Search Google Scholar
    • Export Citation
  • Dirac, P. A. M., 1964: Lectures on Quantum Mechanics. Yeshiva University, 96 pp.

  • Djurić, D., and M. S. Damiani Jr., 1980: On the formation of the low-level jet over Texas. Mon. Wea. Rev., 108, 18541865, https://doi.org/10.1175/1520-0493(1980)108<1854:OTFOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, T., O. Bokhove, and S. Tobias, 2017: Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus, 69A, 1369332, https://doi.org/10.1080/16000870.2017.1369332.

    • Crossref
    • Export Citation
  • Ladwig, D. S., 1980: Cyclogenesis and the low-level jet over the southern Great Plains. Air Force Institute of Technology Tech. Rep., 62 pp.

  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, https://doi.org/10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ripa, P., 1993: Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn., 70, 85111, https://doi.org/10.1080/03091929308203588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salman, H., L. Kuznetsov, C. Jones, and K. Ide, 2006: A method for assimilating Lagrangian data into a shallow-water-equation ocean model. Mon. Wea. Rev., 134, 10811101, https://doi.org/10.1175/MWR3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid Mech., 132, 431444, https://doi.org/10.1017/S0022112083001706.

  • Salmon, R., 1985: New equations for nearly geostrophic flow. J. Fluid Mech., 153, 461477, https://doi.org/10.1017/S0022112085001343.

  • Salmon, R., 1988: Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech., 20, 225256, https://doi.org/10.1146/annurev.fl.20.010188.001301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32, 287338, https://doi.org/10.1016/S0065-2687%2808%2960429-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T., 1993: A unified theory of available potential energy. Atmos.-Ocean, 31, 126, https://doi.org/10.1080/07055900.1993.9649460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., S. L. Dance, and N. K. Nichols, 2013: Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model. Tellus, 65A, 19546, https://doi.org/10.3402/tellusa.v65i0.19546.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

    • Crossref
    • Export Citation
  • Van Kampen, N. G., 1985: Elimination of fast variables. Phys. Rep., 124, 69160, https://doi.org/10.1016/0370-1573(85)90002-X.

  • Vanneste, J., and O. Bokhove, 2002: Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models. Physica D, 164, 152167, https://doi.org/10.1016/S0167-2789(02)00375-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Würsch, M., and G. C. Craig, 2014: A simple dynamical model of cumulus convection for data assimilation research. Meteor. Z., 23, 483490, https://doi.org/10.1127/0941-2948/2014/0492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., N. Gustafsson, and E. Källén, 2004: Dynamical response of equatorial waves in four-dimensional variational data assimilation. Tellus, 56A, 2946, https://doi.org/10.1111/j.1600-0870.2004.00036.x.

    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 2007: Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances. Elsevier, 400 pp.

  • Zeitlin, V., 2018: Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models. Oxford University Press, 496 pp.

All Time Past Year Past 30 Days
Abstract Views 104 104 9
Full Text Views 25 25 3
PDF Downloads 30 30 4

An Idealized 1½-Layer Isentropic Model with Convection and Precipitation for Satellite Data Assimilation Research. Part II: Model Derivation

Onno BokhoveaSchool of Mathematics, University of Leeds, Leeds, United Kingdom

Search for other papers by Onno Bokhove in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1005-8463
,
Luca CantarelloaSchool of Mathematics, University of Leeds, Leeds, United Kingdom

Search for other papers by Luca Cantarello in
Current site
Google Scholar
PubMed
Close
, and
Steven TobiasaSchool of Mathematics, University of Leeds, Leeds, United Kingdom

Search for other papers by Steven Tobias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this Part II paper we present a fully consistent analytical derivation of the “dry” isentropic 1½-layer shallow-water model described and used in Part I of this study, with no convection and precipitation. The mathematical derivation presented here is based on a combined asymptotic and slaved Hamiltonian analysis, which is used to resolve an apparent inconsistency arising from the application of a rigid-lid approximation to an isentropic two-layer shallow-water model. Real observations based on radiosonde data are used to justify the scaling assumptions used throughout the paper, as well as in Part I. Eventually, a fully consistent isentropic 1½-layer model emerges from imposing fluid at rest (v1 = 0) and zero Montgomery potential (M1 = 0) in the upper layer of an isentropic two-layer model.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Onno Bokhove, o.bokhove@leeds.ac.uk; Luca Cantarello, mmlca@leeds.ac.uk

Abstract

In this Part II paper we present a fully consistent analytical derivation of the “dry” isentropic 1½-layer shallow-water model described and used in Part I of this study, with no convection and precipitation. The mathematical derivation presented here is based on a combined asymptotic and slaved Hamiltonian analysis, which is used to resolve an apparent inconsistency arising from the application of a rigid-lid approximation to an isentropic two-layer shallow-water model. Real observations based on radiosonde data are used to justify the scaling assumptions used throughout the paper, as well as in Part I. Eventually, a fully consistent isentropic 1½-layer model emerges from imposing fluid at rest (v1 = 0) and zero Montgomery potential (M1 = 0) in the upper layer of an isentropic two-layer model.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Onno Bokhove, o.bokhove@leeds.ac.uk; Luca Cantarello, mmlca@leeds.ac.uk
Save