• American Meteorological Society, 2021: Rain. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Rain.

  • Bembenek, E., D. N. Straub, and T. M. Merlis, 2020: Effects of moisture in a two-layer model of the midlatitude jet stream. J. Atmos. Sci., 77, 131147, https://doi.org/10.1175/JAS-D-19-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate?. J. Climate, 22, 22762301, https://doi.org/10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolaptchiev, S. I., and R. Klein, 2009: Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow. Dyn. Atmos. Oceans, 46, 4661, https://doi.org/10.1016/j.dynatmoce.2008.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhaus, W., 1979: Asymptotic Analysis of Singular Perturbations. Vol. 9. North Holland, 287 pp.

  • Hartmann, D. L., 2016: Global Physical Climatology. 2nd ed. Elsevier, 485 pp.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hittmeir, S., and R. Klein, 2018: Asymptotics for moist deep convection I: Refined scalings and self-sustaining updrafts. Theor. Comput. Fluid Dyn., 32, 137164, https://doi.org/10.1007/s00162-017-0443-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., 2019: Models for Tropical Climate Dynamics. Mathematics of Planet Earth, Vol. 3, Springer, 303 pp.

    • Crossref
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, https://doi.org/10.1175/JAS3677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, R., 2010: Scale-dependent asymptotic models for atmospheric flows. Annu. Rev. Fluid Mech., 42, 249274, https://doi.org/10.1146/annurev-fluid-121108-145537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., G. Lapeyre, and G. Riviére, 2011: A quasi-geostrophic model for moist storm tracks. J. Atmos. Sci., 68, 13061322, https://doi.org/10.1175/2011JAS3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, and V. Zeitlin, 2011: Moist versus dry barotropic instability in a shallow-water model of the atmosphere with moist convection. J. Atmos. Sci., 68, 12341252, https://doi.org/10.1175/2011JAS3540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, and V. Zeitlin, 2012: Moist versus dry baroclinic instability in a simplified two-layer atmospheric model with condensation and latent heat release. J. Atmos. Sci., 69, 14051426, https://doi.org/10.1175/JAS-D-11-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettau, H. H., and B. Davidson, 1957: Exploring the Atmosphere’s First Mile. Vol. 2. Pergamon Press, 578 pp.

  • Majda, A. J., and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99, 11231128, https://doi.org/10.1073/pnas.032663199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsico, D. H., L. M. Smith, and S. N. Stechmann, 2019: Energy decompositions for moist Boussinesq and anelastic equations with phase changes. J. Atmos. Sci., 76, 35693587, https://doi.org/10.1175/JAS-D-19-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, https://doi.org/10.1029/2006JD007555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, W., and J. Cho, 2020: A balanced state consistent with planetary-scale motion for quasi-geostrophic dynamics. Tellus, 72A, 1697164, https://doi.org/10.1080/16000870.2019.1697164.

    • Search Google Scholar
    • Export Citation
  • Nayfeh, A. H., 1973: Perturbation Methods. John Wiley and Sons, 96 pp.

  • Owinoh, A., B. Stevens, and R. Klein, 2011: Multiscale asymptotics analysis for the mesoscale dynamics of cloud-topped boundary layers. J. Atmos. Sci., 68, 379402, https://doi.org/10.1175/2010JAS3469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Päschke, E., P. Marschalik, A. Owinoh, and R. Klein, 2012: Motion and structure of atmospheric mesoscale baroclinic vortices: Dry air and weak environmental shear. J. Fluid Mech., 701, 137170, https://doi.org/10.1017/jfm.2012.144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Rácz, Z., and R. Smith, 1999: The dynamics of heat lows. Quart. J. Roy. Meteor. Soc., 125, 225252, https://doi.org/10.1002/qj.49712555313.

  • Schneider, W., 1978: Mathematische Methoden der Strömungsmechanik. Vieweg, 261 pp.

    • Crossref
    • Export Citation
  • Smith, L., and S. N. Stechmann, 2017: Precipitating quasigeostrophic equations and potential vorticity inversion with phase changes. J. Atmos. Sci., 74, 32853303, https://doi.org/10.1175/JAS-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, https://doi.org/10.1146/annurev.earth.33.092203.122658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dyke, M., 1975: Perturbation Methods in Fluid Mechanics. 2nd ed. Parabolic Press, 271 pp.

  • Wang, X. Y., and K. C. Wang, 2014: Estimation of atmospheric mixing layer height from radiosonde data. Atmos. Meas. Tech., 7, 17011709, https://doi.org/10.5194/amt-7-1701-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, A. N., L. M. Smith, S. N. Stechmann, and J. E. Martin, 2019: Balanced and unbalanced components of moist atmospheric flows with phase changes. Chin. Ann. Math., 40B, 10051038, https://doi.org/10.1007/s11401-019-0170-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, E. J. Fetzer, and J. Teixeira, 2011: Relationship between marine boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP. J. Geophys. Res., 116, D18212, https://doi.org/10.1029/2011JD016136.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., W. J. Randel, and R. Fu, 2017: Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dyn., 49, 29112929, https://doi.org/10.1007/s00382-016-3501-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 148 144 20
Full Text Views 49 49 2
PDF Downloads 60 60 3

QG–DL–Ekman: Dynamics of a Diabatic Layer in the Quasi-Geostrophic Framework

View More View Less
  • 1 aFB Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany
  • | 2 bInstitut für Meteorologie, Freie Universität Berlin, Berlin, Germany
  • | 3 cDepartment of Mathematics, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

Quasigeostrophic (QG) theory describes the dynamics of synoptic-scale flows in the troposphere that are balanced with respect to both acoustic and internal gravity waves. Within this framework, effects of (turbulent) friction near the ground are usually represented by Ekman layer theory. The troposphere covers roughly the lowest 10 km of the atmosphere while Ekman layer heights are typically just a few hundred meters. However, this two-layer asymptotic theory does not explicitly account for substantial changes of the potential temperature stratification due to diabatic heating associated with cloud formation or with radiative and turbulent heat fluxes which can be significant in about the lowest 3 km and in the middle latitudes. To address this deficiency, this paper extends the classical QG–Ekman layer model by introducing an intermediate dynamically and thermodynamically active layer, called the “diabatic layer” (DL) from here on. The flow in this layer is also in acoustic, hydrostatic, and geostrophic balance but, in contrast to QG flow, variations of potential temperature are not restricted to small deviations from a stable and time-independent background stratification. Instead, within the DL diabatic processes are allowed to affect the leading-order stratification. As a consequence, this layer modifies the pressure field at the top of the Ekman layer, and with it the intensity of Ekman pumping seen by the quasigeostrophic bulk flow. The result is the proposed extended quasigeostrophic three-layer QG–DL–Ekman model for midlatitude dynamics.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rupert Klein, rupert.klein@math.fu-berlin.de

Abstract

Quasigeostrophic (QG) theory describes the dynamics of synoptic-scale flows in the troposphere that are balanced with respect to both acoustic and internal gravity waves. Within this framework, effects of (turbulent) friction near the ground are usually represented by Ekman layer theory. The troposphere covers roughly the lowest 10 km of the atmosphere while Ekman layer heights are typically just a few hundred meters. However, this two-layer asymptotic theory does not explicitly account for substantial changes of the potential temperature stratification due to diabatic heating associated with cloud formation or with radiative and turbulent heat fluxes which can be significant in about the lowest 3 km and in the middle latitudes. To address this deficiency, this paper extends the classical QG–Ekman layer model by introducing an intermediate dynamically and thermodynamically active layer, called the “diabatic layer” (DL) from here on. The flow in this layer is also in acoustic, hydrostatic, and geostrophic balance but, in contrast to QG flow, variations of potential temperature are not restricted to small deviations from a stable and time-independent background stratification. Instead, within the DL diabatic processes are allowed to affect the leading-order stratification. As a consequence, this layer modifies the pressure field at the top of the Ekman layer, and with it the intensity of Ekman pumping seen by the quasigeostrophic bulk flow. The result is the proposed extended quasigeostrophic three-layer QG–DL–Ekman model for midlatitude dynamics.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rupert Klein, rupert.klein@math.fu-berlin.de
Save