• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakhshaii, A., and R. Stull, 2013: Saturated pseudoadiabats—A noniterative approximation. J. Appl. Meteor. Climatol., 52, 515, https://doi.org/10.1175/JAMC-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1974: Further comments on “A comparison of the equivalent potential temperature and the static energy.” J. Atmos. Sci., 31, 17131715, https://doi.org/10.1175/1520-0469(1974)031<1713:FCOCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and B. A. Albrecht, 1998: Atmospheric Thermodynamics. Oxford University Press, 402 pp.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brent, R., 1973: Algorithms for Minimization without Derivatives. Prentice Hall, 195 pp.

  • Brown, M., and C. J. Nowotarski, 2019: The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms. J. Atmos. Sci., 76, 13491372, https://doi.org/10.1175/JAS-D-18-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2004: A reevaluation of ice–liquid water potential temperature. Mon. Wea. Rev., 132, 24212431, https://doi.org/10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and D. T. Dawson, 2021: An idealized physical model for the severe convective storm environmental sounding. J. Atmos. Sci., 78, 653670, https://doi.org/10.1175/JAS-D-20-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and M. D. Parker, 2020: Insights into supercells and their environments from three decades of targeted radiosonde observations. Mon. Wea. Rev., 148, 48934915, https://doi.org/10.1175/MWR-D-20-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 31783205, https://doi.org/10.1175/1520-0469(2003)059<3178:LANPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Wea. Rev., 136, 27642785, https://doi.org/10.1175/2007MWR2224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 588 pp.

  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, https://doi.org/10.1175/JAS3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquet, P., 2016: Comments on “MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel.” J. Atmos. Sci., 73, 25652575, https://doi.org/10.1175/JAS-D-15-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, https://doi.org/10.1002/qj.49710243208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does vertical wind shear influence entrainment in squall lines? J. Atmos. Sci., 78, 19311946, https://doi.org/10.1175/JAS-D-20-0299.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and D. R. Chavas, 2021: Evaluating the conservation of energy variables in simulations of deep moist convection. J. Atmos. Sci., 78, 32293246, https://doi.org/10.1175/JAS-D-20-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020a: A formula for the maximum vertical velocity in supercell updrafts. J. Atmos. Sci., 77, 37473757, https://doi.org/10.1175/JAS-D-20-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and G. Mullendore, 2020b: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and J. P. Mulholland, 2020c: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020d: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, G. J. Zhang, and S. W. Powell, 2021: Improving the physical basis for updraft dynamics in deep convection parameterizations. J. Adv. Model. Earth Syst., 13, e2020MS002282, https://doi.org/10.1029/2020MS002282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prosser, N. E., and D. S. Foster, 1966: Upper air sounding analysis by use of an electronic computer. J. Appl. Meteor. Climatol., 5, 296300, https://doi.org/10.1175/1520-0450(1966)005<0296:UASABU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, https://doi.org/10.1175/2008JAS2679.1.

  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., 2015: MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. J. Atmos. Sci., 72, 36393646, https://doi.org/10.1175/JAS-D-15-0054.1.s

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2021: Accurate expressions for the dewpoint and frost point derived from the Rankine–Kirchhoff approximations. J. Atmos. Sci., 78, 21132116, https://doi.org/10.1175/JAS-D-20-0301.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., and J. S. Turner, 1962: An entraining jet model for cumulo-nimbus updrafts. Tellus, 14A, 422434, https://doi.org/10.1111/j.2153-3490.1962.tb01355.x.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unidata, 2021: MetPy: A Python Package for Meteorological Data, version 1.1.0. UCAR/Unidata, accessed 1 May 2021, https://doi.org/10.5065/D6WW7G29.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convective parameterization. J. Geophys. Res., 114, D07109, https://doi.org/10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on hot towers after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM): A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 5059.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 732 727 59
Full Text Views 184 183 12
PDF Downloads 214 212 17

Generalized Lapse Rate Formulas for Use in Entraining CAPE Calculations

View More View Less
  • 1 aDepartment of Meteorology, Naval Postgraduate School, Monterey, California
  • | 2 bDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
Restricted access

Abstract

Common assumptions in temperature lapse rate formulas for lifted air parcels include neglecting mixing, hydrostatic balance, the removal of all condensate once it forms (pseudoadiabatic), and/or the retention of all condensate within the parcel (adiabatic). These formulas are commonly derived from the conservation of entropy, which leads to errors when nonequilibrium mixed-phase condensate is present. To evaluate these assumptions, a new general lapse rate formula is derived from an expression for energy conservation, rather than entropy conservation. This new formula incorporates mixing of the parcel with its surroundings, relaxes the hydrostatic assumption, allows for nonequilibrium mixed-phase condensate, and can be formulated for pseudoadiabatic or adiabatic ascent. The new formula is shown to exactly conserve entropy for reversible ascent. Predictions by the new formula are compared to that of older and less general formulas. The errors in previous formulas arise from the assumption of hydrostatic balance, which results in considerable warm biases due to the neglect of the energy sink from buoyancy. Predictions of ascent with entrainment using the new formula are then compared to parcel properties along trajectories in large eddy simulations. Simulated parcel properties are better predicted by the formula using a diluted analogy to adiabatic ascent, wherein condensate is diluted at the same rate as other parcel properties, than by the diluted analogy to pseudoadiabatic ascent, wherein all condensate is removed. These results suggest that CAPE should be computed with adiabatic, rather than pseudoadiabatic, parcel ascent.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Peters, jmpeters@nps.edu

Abstract

Common assumptions in temperature lapse rate formulas for lifted air parcels include neglecting mixing, hydrostatic balance, the removal of all condensate once it forms (pseudoadiabatic), and/or the retention of all condensate within the parcel (adiabatic). These formulas are commonly derived from the conservation of entropy, which leads to errors when nonequilibrium mixed-phase condensate is present. To evaluate these assumptions, a new general lapse rate formula is derived from an expression for energy conservation, rather than entropy conservation. This new formula incorporates mixing of the parcel with its surroundings, relaxes the hydrostatic assumption, allows for nonequilibrium mixed-phase condensate, and can be formulated for pseudoadiabatic or adiabatic ascent. The new formula is shown to exactly conserve entropy for reversible ascent. Predictions by the new formula are compared to that of older and less general formulas. The errors in previous formulas arise from the assumption of hydrostatic balance, which results in considerable warm biases due to the neglect of the energy sink from buoyancy. Predictions of ascent with entrainment using the new formula are then compared to parcel properties along trajectories in large eddy simulations. Simulated parcel properties are better predicted by the formula using a diluted analogy to adiabatic ascent, wherein condensate is diluted at the same rate as other parcel properties, than by the diluted analogy to pseudoadiabatic ascent, wherein all condensate is removed. These results suggest that CAPE should be computed with adiabatic, rather than pseudoadiabatic, parcel ascent.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Peters, jmpeters@nps.edu
Save