• Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, https://doi.org/10.1029/2011GL047015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230, https://doi.org/10.1175/JAS-D-12-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 37233738, https://doi.org/10.1175/JAS-D-14-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, S. A. Braun, and J. Dunion, 2016: On the secondary eyewall formation of Hurricane Edouard (2014). J. Atmos. Sci., 144, 33213331, https://doi.org/10.1175/MWR-D-15-0421.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108%3C1046:TCOEPT%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2017: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 98, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balance and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P1.7 https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., C.-C. Wu, and M. T. Montgomery, 2018: Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. J. Atmos. Sci., 75, 35413563, https://doi.org/10.1175/JAS-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julien, K., S. Legg, J. McWilliams, and J. Werne, 1996: Rapidly rotating turbulent Rayleigh-Bénard convection. J. Fluid Mech., 322, 243273, https://doi.org/10.1017/S0022112096002789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: A unified view of tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 450462, https://doi.org/10.1002/qj.2934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2018: The role of heating and cooling associated with ice processes on tropical cyclongenesis and intensification. Quart. J. Roy. Meteor. Soc., 144, 99114, https://doi.org/10.1002/qj.3187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198, https://doi.org/10.1175/2008MWR2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Ocean J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2018: Comments on “Revisiting the balanced and unbalanced aspects of tropical cyclone intensification.” J. Atmos. Sci., 75, 24912496, https://doi.org/10.1175/JAS-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Persing, 2021: Does balance dynamics well capture the secondary circulation and spinup of a simulated hurricane? J. Atmos. Sci., 78, 7595, https://doi.org/10.1175/JAS-D-19-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. V. Nguyen, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, https://doi.org/10.1002/qj.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2014: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, https://doi.org/10.1002/2014MS000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2019: On the hypothesized outflow control of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 145, 13091322, https://doi.org/10.1002/qj.3479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., G. Kilroy, R. K. Smith, and N. Črnivec, 2020: Contribution of mean and eddy momentum processes to tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 146, 31013117, https://doi.org/10.1002/qj.3837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 13 32313 438, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, H. Jiang, G. Alvey, E. Zipser, and S. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 3353376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. W. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: Understanding hurricanes. Weather, 71, 219223, https://doi.org/10.1002/wea.2776.

  • Smith, R. K., and M. T. Montgomery, 2021: The generalized Ekman model for the tropical cyclone boundary layer revisted: Addendum. Quart. J. Roy. Meteor. Soc., 147, 14711476, https://doi.org/10.1002/qj.4012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and V. S. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in an HWRF simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2021: Tropical cyclone life cycle in a three-dimensional numerical simulation. Quart. J. Roy. Meteor. Soc., 147, 33733393, https://doi.org/10.1002/qj.4133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyner, B., P. Zhu, J. A. Zhang, S. Gopolakrishnan, F. Marks Jr., and V. Tallpragrada, 2017: A top-down pathway to secondary eyewall formation in simulation tropical cyclones. J. Geophys. Res. Atmos., 123, 174197, https://doi.org/10.1002/2017JD027410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and R. K. Smith, 2019: Consequences of regularizing the Sawyer-Eliassen equation in balance models for tropical cyclone behaviour. Quart. J. Roy. Meteor. Soc., 145, 37663779, https://doi.org/10.1002/qj.3656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands-driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 22172236, https://doi.org/10.1175/JAS-D-19-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and propagating convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y.-H. Huang, 2015: Tropical cyclones: Secondary eyewall formation. Encyclopedia of Atmospheric Science, Vol. 6, 2nd ed. Elsevier, 8590.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 204 201 11
Full Text Views 87 87 16
PDF Downloads 81 81 20

Does the Rotating Convection Paradigm Describe Secondary Eyewall Formation in Idealized Three-Dimensional Simulations?

View More View Less
  • 1 Department of Meteorology, Naval Postgraduate School, Monterey, California
Restricted access

Abstract

The formation of a plausible secondary eyewall is examined with two principal simulation experiments that differ only in the fixed value of rain fall speed, one with a value of 70 m s−1 (approaching the pseudo-adiabatic limit) that simulates a secondary eyewall, and one with a value of 7 m s−1 that does not simulate a secondary eyewall. Key differences are sought between these idealized three-dimensional simulations. A notable expansion of the lower-tropospheric tangential wind field to approximately 400-km radius is found associated with the precursor period of the secondary eyewall. The wind field expansion is traced to an enhanced vertical mass flux across the 5.25-km height level, which leads, in turn, to enhanced radial inflow in the lower troposphere and above the boundary layer. The inflow spins up the tangential wind outside the primary eyewall via the conventional spinup mechanism. This amplified tangential wind field is linked to a broad region of outwardly directed agradient force in the upper boundary layer. Whereas scattered convection is found outside the primary eyewall in both simulations, the agradient force is shown to promote a ring-like organization of this convection when boundary layer convergence occurs in a persistent, localized region of supergradient winds. The results support prior work highlighting a new model of secondary eyewall formation emphasizing a boundary layer control pathway for initiating the outer eyewall as part of the rotating convection paradigm of tropical cyclone evolution.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu

Abstract

The formation of a plausible secondary eyewall is examined with two principal simulation experiments that differ only in the fixed value of rain fall speed, one with a value of 70 m s−1 (approaching the pseudo-adiabatic limit) that simulates a secondary eyewall, and one with a value of 7 m s−1 that does not simulate a secondary eyewall. Key differences are sought between these idealized three-dimensional simulations. A notable expansion of the lower-tropospheric tangential wind field to approximately 400-km radius is found associated with the precursor period of the secondary eyewall. The wind field expansion is traced to an enhanced vertical mass flux across the 5.25-km height level, which leads, in turn, to enhanced radial inflow in the lower troposphere and above the boundary layer. The inflow spins up the tangential wind outside the primary eyewall via the conventional spinup mechanism. This amplified tangential wind field is linked to a broad region of outwardly directed agradient force in the upper boundary layer. Whereas scattered convection is found outside the primary eyewall in both simulations, the agradient force is shown to promote a ring-like organization of this convection when boundary layer convergence occurs in a persistent, localized region of supergradient winds. The results support prior work highlighting a new model of secondary eyewall formation emphasizing a boundary layer control pathway for initiating the outer eyewall as part of the rotating convection paradigm of tropical cyclone evolution.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu
Save