• Anabor, V., D. J. Stensrud, and O. L. L. De Moraes, 2008: Serial upstream-propagating mesoscale convective system events over southeastern South America. Mon. Wea. Rev., 136, 30873105, https://doi.org/10.1175/2007MWR2334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356, https://doi.org/10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1986: Daytime boundary layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 11121130, https://doi.org/10.1175/1520-0493(1986)114<1112:DBLEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1990: Atmospheric Processes over Complex Terrain. W. Blumen, Ed., Amer. Meteor. Soc., 323 pp., http://link.springer.com/10.1007/978-1-935704-25-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, B., and Coauthors, 2020: ERA5 monthly averaged data on pressure levels from 1950 to 1978 (preliminary version). C3S CDS, accessed 18 November 2020, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-preliminary-back-extension?tab=form.

    • Search Google Scholar
    • Export Citation
  • Bhushan, S., and A. P. Barros, 2007: A numerical study to investigate the relationship between moisture convergence patterns and orography in central Mexico. J. Hydrometeor., 8, 12641284, https://doi.org/10.1175/2007JHM791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cancelada, M., P. Salio, D. Vila, S. W. Nesbitt, and L. Vidal, 2020: Backward adaptive brightness temperature threshold technique (BAB3T): A methodology to determine extreme convective initiation regions using satellite infrared imagery. Remote Sens., 12, 337, https://doi.org/10.3390/rs12020337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., and Coauthors, 2011: Processes driving deep convection over complex terrain: A multi-scale analysis of observations from COPS IOP 9c. Quart. J. Roy. Meteor. Soc., 137, 137155, https://doi.org/10.1002/qj.754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 7991, https://doi.org/10.1175/MWR3055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288, https://doi.org/10.1175/2008MWR2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagen, M., J. Van Baelen, and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137, 224235, https://doi.org/10.1002/qj.784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 21242137, https://doi.org/10.1002/qj.877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 1724, https://www.ecmwf.int/node/19027.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 606 pp.

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JPL, 2014: NASA Shuttle Radar Topography Mission combined image data set. NASA EOSDIS Land Processes DAAC, accessed 20 November 2021, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMIMGM.003.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., G. H. Bryan, S.-L. Kang, and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, https://doi.org/10.1175/MWR-D-10-05037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and C.-C. Wang, 2014: Boundary layer updrafts driven by airflow over heated terrain. J. Atmos. Sci., 71, 14251442, https://doi.org/10.1175/JAS-D-13-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931948, https://doi.org/10.1127/0941-2948/2008/0348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovacs, M., and D. J. Kirshbaum, 2016: Topographic impacts on the spatial distribution of deep convection over southern Quebec. J. Appl. Meteor. Climatol., 55, 743762, https://doi.org/10.1175/JAMC-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labbouz, L., and Coauthors, 2013: Precipitation on the lee side of the Vosges Mountains: Multi-instrumental study of one case from the COPS campaign. Meteor. Z., 22, 413432, https://doi.org/10.1127/0941-2948/2013/0413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, https://doi.org/10.1016/j.atmosres.2010.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, R. M., S. C. Arms, P. Marsh, E. Bruning, J. R. Leeman, K. Goebbert, J. E. Thielen, and Z. S. Bruick, 2020: MetPy: A Python package for meteorological data. GitHub, https://github.com/Unidata/MetPy.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling prospective. J. Atmos. Sci., 77, 39293949, https://doi.org/10.1175/JAS-D-19-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., M. S. Gilmore, R. L. Thompson, R. Edwards, and R. B. Wilhelmson, 2012: Comparison of objective supercell identification techniques using an idealized cloud model. Mon. Wea. Rev., 140, 20902102, https://doi.org/10.1175/MWR-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Coauthors, 2021: A storm safari in subtropical South America: Proyecto RELAMPAGO. Bull. Amer. Meteor. Soc., 102, E1621E1644, https://doi.org/10.1175/BAMS-D-20-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panosetti, D., S. Böing, L. Schlemmer, and J. Schmidli, 2016: Idealized large-eddy and convection-resolving simulations of moist convection over mountainous terrain. J. Atmos. Sci., 73, 40214041, https://doi.org/10.1175/JAS-D-15-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piersante, J. O., K. L. Rasmussen, R. S. Schumacher, A. K. Rowe, and L. A. McMurdie, 2021: A synoptic evolution comparison of the smallest and largest MCSs in subtropical South America between spring and summer. Mon. Wea. Rev., 149, 19431966, https://doi.org/10.1175/MWR-D-20-0208.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, https://doi.org/10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B. Z., and L. F. Bosart, 2018: Elevated mixed layers and associated severe thunderstorm environments in South and North America. Mon. Wea. Rev., 146, 328, https://doi.org/10.1175/MWR-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary‐layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, https://doi.org/10.1002/qj.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffknecht, P., S. Serafin, and V. Grubišić, 2017: A long-lived supercell over mountainous terrain. Quart. J. Roy. Meteor. Soc., 143, 29732986, https://doi.org/10.1002/qj.3127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., and D. K. Lilly, 1999: An observational and numerical study of a sheared, convective boundary layer. Part I: Phoenix II observations, statistical description, and visualization. J. Atmos. Sci., 56, 30593078, https://doi.org/10.1175/1520-0469(1999)056<3059:AOANSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwitalla, T., H. S. Bauer, V. Wulfmeyer, and G. Zängl, 2008: Systematic errors of QPF in low-mountain regions as revealed by MM5 simulations. Meteor. Z., 17, 903919, https://doi.org/10.1127/0941-2948/2008/0338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 2015: Multivariate Density Estimation: Theory, Practice, and Visualization. 2nd ed. John Wiley and Sons, 384 pp.

  • Shepherd, J. M., B. S. Ferrier, and P. S. Ray, 2001: Rainfall morphology in Florida convergence zones: A numerical study. Mon. Wea. Rev., 129, 177197, https://doi.org/10.1175/1520-0493(2001)129<0177:RMIFCZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siller, M., S. Serafin, and M. W. Rotach, 2019: Convection initiation in connection with a mountain wave episode. EGU General Assembly, Vienna, Austria, EGU, 9055.

    • Search Google Scholar
    • Export Citation
  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, https://doi.org/10.1175/MWR-D-13-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanford, M. W., H. Morrison, A. Varble, J. Berner, W. Wu, G. McFarquhar, and J. Milbrandt, 2019: Sensitivity of simulated deep convection to a stochastic ice microphysics framework. J. Adv. Model. Earth Syst., 11, 33623389, https://doi.org/10.1029/2019MS001730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes. Cambridge University Press, 449 pp.

  • Stevens, B., C. H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984, https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., S. P. Burns, A. C. Delany, S. P. Oncley, T. W. Horst, and D. H. Lenschow, 2003: Heat balance in the nocturnal boundary layer during CASES-99. J. Appl. Meteor., 42, 16491666, https://doi.org/10.1175/1520-0450(2003)042<1649:HBITNB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and Coauthors, 2020: Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. Mon. Wea. Rev., 148, 32253241, https://doi.org/10.1175/MWR-D-20-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud, 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, https://doi.org/10.1175/MWR-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR, 1990: NCAR Integrated Surface Flux System (ISFS). Accessed 15 December 2020, https://doi.org/10.5065/D6ZC80XJ.

  • UCAR/NCAR, 2020: Multi-network composite highest resolution radiosonde data, version 1.3. UCAR/NCAR Earth Observing Laboratory, accessed 12 December 2020, https://doi.org/10.26023/GKFF-YNBJ-BV14.

    • Search Google Scholar
    • Export Citation
  • Varble, A., H. Morrison, and E. Zipser, 2020: Effects of under-resolved convective dynamics on the evolution of a squall line. Mon. Wea. Rev., 148, 289311, https://doi.org/10.1175/MWR-D-19-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6378, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17, 261272, https://doi.org/10.1038/s41592-019-0686-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Xue, and Z. Tan, 2016: Convective initiation by topographically induced convergence forcing over the Dabie Mountains on 24 June 2010. Adv. Atmos. Sci., 33, 11201136, https://doi.org/10.1007/s00376-016-6024-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, https://doi.org/10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., H. V. Murphey, C. Flamant, J. Goldstein, and C. R. Pettet, 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, https://doi.org/10.1175/2007MWR2128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Quart. J. Roy. Meteor. Soc., 137, 3141, https://doi.org/10.1002/qj.747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137, 330, https://doi.org/10.1002/qj.752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 43 43 43
Full Text Views 16 16 16
PDF Downloads 19 19 19

Quasi-Idealized Numerical Simulations of Processes Involved in Orogenic Convection Initiation over the Sierras de Córdoba

View More View Less
  • 1 aUniversity of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 bNational Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The Sierras de Córdoba (SDC) range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly low-level jet (LLJ), and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using Cloud Model 1 (CM1). The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. The simulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI: High Impact Weather in Subtropical South America Special Collection.

Corresponding author: Itinderjot Singh, isingh9@illinois.edu

Abstract

The Sierras de Córdoba (SDC) range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly low-level jet (LLJ), and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using Cloud Model 1 (CM1). The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. The simulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI: High Impact Weather in Subtropical South America Special Collection.

Corresponding author: Itinderjot Singh, isingh9@illinois.edu
Save