• Alexander, M. J., and C. Barnet, 2007: Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64, 16521665, https://doi.org/10.1175/JAS3897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, https://doi.org/10.1002/2013JD020526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amemiya, A., and K. Sato, 2016: A new gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan, 94, 237256, https://doi.org/10.2151/jmsj.2016-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and T. N. Palmer, 1990: Rationale for a new physically based parameterization of subgrid scale orographic effects. ECMWF Tech. Rep., 11 pp.

  • Balmino, G., 1993: The spectra of the topography of the Earth, Venus and Mars. Geophys. Res. Lett., 20, 10631066, https://doi.org/10.1029/93GL01214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, https://doi.org/10.1256/qj.03.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, M., and Coauthors, 2020: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1. Geosci. Model Dev., 13, 19992029, https://doi.org/10.5194/gmd-13-1999-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., D. R. Durran, and G. J. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 32133231, https://doi.org/10.1175/JAS3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). USGS Tech. Rep. Open-File Rep. 2011-1073, 26 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeSouza-Machado, S. G., L. L. Strow, S. E. Hannon, H. E. Motteler, M. Lopez-Puertas, B. Funke, and D. P. Edwards, 2007: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders. Geophys. Res. Lett., 34, L01802, https://doi.org/10.1029/2006GL026684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, https://doi.org/10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 23302347, https://doi.org/10.1175/JAS-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., L. Hoffmann, and P. Preusse, 2017: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data. Geophys. Res. Lett., 44, 475485, https://doi.org/10.1002/2016GL072007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. G. Shepherd, and D. W. Waugh, 2010: SPARC CCMVal report on the evaluation of chemistry-climate models. SPARC Tech. Rep., 426 pp, http://www.sparc-climate.org/publications/sparc-reports/.

  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183.

  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2018: ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. J. Adv. Model. Earth Syst., 10, 16131637, https://doi.org/10.1029/2017MS001242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., M. J. Alexander, P. T. May, and L. Hoffmann, 2010: Model study of waves generated by convection with direct validation via satellite. J. Atmos. Sci., 67, 16171631, https://doi.org/10.1175/2009JAS3197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. Janousek, J.-R. Bidlot, R. Buizza, L. Ferranti, F. Prates, and F. Vitart, 2018: Evaluation of ECMWF forecasts, including the 2018 upgrade. ECMWF Tech. Rep. 831, 54 pp., https://doi.org/10.21957/ldw15ckqi.

    • Crossref
    • Export Citation
  • Hastings, D. A., and P. K. Dunbar, 1999: Global Land One-kilometer Base Elevation (GLOBE). NOAA NESDIS Tech. Rep., 147 pp., https://www.ngdc.noaa.gov/mgg/topo/report/globedocumentationmanual.pdf.

  • Heinze, R., and Coauthors, 2017: Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69100, https://doi.org/10.1002/qj.2947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. D. Doyle, S. D. Eckermann, Q. Jiang, and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, https://doi.org/10.1175/JAS-D-13-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., C. J. Wright, L. Hoffmann, T. Moffat-Griffin, and N. J. Mitchell, 2020: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations. Geophys. Res. Lett., 47, e2020GL089557, https://doi.org/10.1029/2020GL089557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and M. J. Alexander, 2009: Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies. J. Geophys. Res., 114, D07105, https://doi.org/10.1029/2008JD011241.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., X. Xue, and M. J. Alexander, 2013: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos., 118, 416434, https://doi.org/10.1029/2012JD018658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., M. J. Alexander, C. Clerbaux, A. W. Grimsdell, C. I. Meyer, T. Rößler, and B. Tournier, 2014: Intercomparison of stratospheric gravity wave observations with AIRS and IASI. Atmos. Meas. Tech., 7, 45174537, https://doi.org/10.5194/amt-7-4517-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., A. W. Grimsdell, and M. J. Alexander, 2016: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations. Atmos. Chem. Phys., 16, 93819397, https://doi.org/10.5194/acp-16-9381-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., R. Spang, A. Orr, M. J. Alexander, L. A. Holt, and O. Stein, 2017: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation. Atmos. Chem. Phys., 17, 29012920, https://doi.org/10.5194/acp-17-2901-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Camara, and F. Lott, 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, https://doi.org/10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, A. Reinecke, R. B. Smith, and S. D. Eckermann, 2013: A modeling study of stratospheric waves over the southern Andes and Drake Passage. J. Atmos. Sci., 70, 16681689, https://doi.org/10.1175/JAS-D-12-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, S. D. Eckermann, and B. P. Williams, 2019: Stratospheric trailing gravity waves from New Zealand. J. Atmos. Sci., 76, 15651586, https://doi.org/10.1175/JAS-D-18-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and W. C. Skamarock, 2021: Adapting the MPAS dynamical core for applications extending into the thermosphere. J. Adv. Model. Earth Syst., 13, e2021MS002499, https://doi.org/10.1029/2021MS002499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, D., and P. Thörnig, 2018: JURECA: Modular supercomputer at Jülich Supercomputing Centre. J. Large-Scale Res. Facil., 4, A132, https://doi.org/10.17815/jlsrf-4-121-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., 2018: Mountain wave propagation and attenuation and their influences on Earth’s atmosphere. Ph.D. thesis, Yale University, 163 pp.

  • Kruse, C. G., 2020: Regional to global evolution of impacts of parameterized mountain-wave drag in the lower stratosphere. J. Climate, 33, 30933106, https://doi.org/10.1175/JCLI-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, https://doi.org/10.1175/JAS-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2018: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments. J. Atmos. Sci., 75, 27212740, https://doi.org/10.1175/JAS-D-17-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The midlatitude lower-stratospheric mountain wave “valve layer.” J. Atmos. Sci., 73, 50815100, https://doi.org/10.1175/JAS-D-16-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., J. T. Bacmeister, P. F. Callaghan, and M. A. Taylor, 2015: NCAR_Topo (v1.0): NCAR global model topography generation software for unstructured grids. Geosci. Model Dev., 8, 39753986, https://doi.org/10.5194/gmd-8-3975-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., M. Koller, O. Fuhrer, and C. Schär, 2010: A generalization of the SLEVE vertical coordinate. Mon. Wea. Rev., 138, 36833689, https://doi.org/10.1175/2010MWR3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., K. C. Jezek, and Z. Zhao, 2015: RADARSAT Antarctic mapping project digital elevation model, version 2. NASA NSIDC DAAC Tech. Rep., 14 pp., https://doi.org/10.5067/8JKNEW6BFRVD.

    • Crossref
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60° the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, https://doi.org/10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, C. I., M. Ern, L. Hoffmann, Q. T. Trinh, and M. J. Alexander, 2018: Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations. Atmos. Meas. Tech., 11, 215232, https://doi.org/10.5194/amt-11-215-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. J., T. N. Palmer, and R. Swinbank, 1989: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84109, https://doi.org/10.1007/BF01027469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., and Coauthors, 2015: Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model. Atmos. Chem. Phys., 15, 10711086, https://doi.org/10.5194/acp-15-1071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, https://doi.org/10.1175/2009BAMS2764.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, M., and Coauthors, 2021: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot. Bull. Amer. Meteor. Soc., 102, E871E893, https://doi.org/10.1175/BAMS-D-20-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, https://doi.org/10.1175/JAS-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, https://doi.org/10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., H. Ong, and J. B. Klemp, 2021: A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS. Mon. Wea. Rev., 149, 571583, https://doi.org/10.1175/MWR-D-20-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2019: 100 years of progress on mountain meteorology research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.

    • Crossref
    • Export Citation
  • Smith, R. B., and C. G. Kruse, 2017: Broad-spectrum mountain waves. J. Atmos. Sci., 74, 13811402, https://doi.org/10.1175/JAS-D-16-0297.1.

  • van Niekerk, A., and S. Vosper, 2021: Towards a more ‘scale-aware’ orographic gravity wave drag parametrization: Description and initial testing. Quart. J. Roy. Meteor. Soc., 147, 32433262, https://doi.org/10.1002/qj.4126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weimer, M., and Coauthors, 2021: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART. Atmos. Chem. Phys., 21, 95159543, https://doi.org/10.5194/acp-21-9515-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., N. P. Hindley, L. Hoffmann, M. J. Alexander, and N. J. Mitchell, 2017: Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage. Atmos. Chem. Phys., 17, 85538575, https://doi.org/10.5194/acp-17-8553-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1581 838 0
Full Text Views 460 266 68
PDF Downloads 465 273 40

Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage

Christopher G. KruseaNorthWest Research Associates, Boulder, Colorado

Search for other papers by Christopher G. Kruse in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9808-8167
,
M. Joan AlexanderaNorthWest Research Associates, Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
,
Lars HoffmannbJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Lars Hoffmann in
Current site
Google Scholar
PubMed
Close
,
Annelize van NiekerkcMet Office, Exeter, United Kingdom

Search for other papers by Annelize van Niekerk in
Current site
Google Scholar
PubMed
Close
,
Inna PolichtchoukdECMWF, Reading, United Kingdom

Search for other papers by Inna Polichtchouk in
Current site
Google Scholar
PubMed
Close
,
Julio T. BacmeistereClimate and Global Dynamics Laboratory, NCAR, Boulder, Colorado

Search for other papers by Julio T. Bacmeister in
Current site
Google Scholar
PubMed
Close
,
Laura HoltaNorthWest Research Associates, Boulder, Colorado

Search for other papers by Laura Holt in
Current site
Google Scholar
PubMed
Close
,
Riwal PlougonvenfLaboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

Search for other papers by Riwal Plougonven in
Current site
Google Scholar
PubMed
Close
,
Petr ŠáchagDepartment of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
hInstitute of Meteorology and Climatology (BOKU), University of Natural Resources and Life Sciences, Vienna, Vienna, Austria

Search for other papers by Petr Šácha in
Current site
Google Scholar
PubMed
Close
,
Corwin WrightiCentre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, United Kingdom

Search for other papers by Corwin Wright in
Current site
Google Scholar
PubMed
Close
,
Kaoru SatojDepartment of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Kaoru Sato in
Current site
Google Scholar
PubMed
Close
,
Ryosuke ShibuyakAtmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

Search for other papers by Ryosuke Shibuya in
Current site
Google Scholar
PubMed
Close
,
Sonja GisingerlInstitute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Sonja Gisinger in
Current site
Google Scholar
PubMed
Close
,
Manfred ErnmInstitut für Energie- und Klimaforschung–Stratosphäre (IEK-7), Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Manfred Ern in
Current site
Google Scholar
PubMed
Close
,
Catrin I. MeyerbJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Catrin I. Meyer in
Current site
Google Scholar
PubMed
Close
, and
Olaf SteinbJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

Search for other papers by Olaf Stein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u υ ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

Significance Statement

This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 7 April 2022 to identify it as being part of the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) special collection.

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Corresponding author: Christopher G. Kruse, ckruse@nwra.com

Abstract

Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., u υ ¯ ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

Significance Statement

This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 7 April 2022 to identify it as being part of the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) special collection.

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Corresponding author: Christopher G. Kruse, ckruse@nwra.com

Supplementary Materials

    • Supplemental Materials (PDF 93.6 MB)
Save