• Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA Interim Archive: Version 1.0. ECMWF ERA Rep. Series, 16 pp., http://ecmwf.int/publications/library/do/references/show?id=89203.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., and R. M. Dole, 1993: The dynamics of large-scale cyclogenesis over the North Pacific. J. Atmos. Sci., 50, 421442, https://doi.org/10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y. H. Lee, and J. M. Wallace, 1984a: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y. H. Lee, J. M. Wallace, and H. H. Hsu, 1984b: Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41, 981991, https://doi.org/10.1175/1520-0469(1984)041<0981:TVOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Atmos. Sci., 47, 629649, https://doi.org/10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cash, B. A., and S. Lee, 2001: Observed nonmodal growth of the Pacific–North American teleconnection pattern. J. Climate, 14, 10171028, https://doi.org/10.1175/1520-0442(2001)014<1017:ONGOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2020a: What drives the North Atlantic Oscillation’s temperature anomaly pattern? Part I: The growth and decay of the surface air temperature anomalies. J. Atmos. Sci., 77, 185198, https://doi.org/10.1175/JAS-D-19-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2020b: What drives the North Atlantic Oscillation’s temperature anomaly pattern? Part II: A decomposition of the surface downward longwave radiation anomalies. J. Atmos. Sci., 77, 199216, https://doi.org/10.1175/JAS-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., V. Shenoy, S. B. Feldstein, S. Lee, and M. Goss, 2021: The role of horizontal temperature advection on Arctic amplification. J. Climate, 34, 29572976, https://doi.org/10.1175/JCLI-D-19-0937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. B. Feldstein, B. Tan, and S. Lee, 2017: Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. J. Climate, 30, 31393155, https://doi.org/10.1175/JCLI-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Namias, 1976: North American influences on the circulation and climate of the North Atlantic sector. Mon. Wea. Rev., 104, 12551265, https://doi.org/10.1175/1520-0493(1976)104<1255:NAIOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2014: IFS documentation Cy40r1—Part III: Dynamics and numerical procedures. ECMWF Doc., 31 pp., https://doi.org/10.21957/juw9gfhn2.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2019: IFS documentation CY46r1—Part IV: Physical processes. ECMWF Doc., 223 pp., https://doi.org/10.21957/xphfxep8c.

  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 44304440, https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2015: The relationship between the Pacific–North American teleconnection pattern, the Great Plains low-level jet, and north central U.S. heavy rainfall events. J. Climate, 28, 67296742, https://doi.org/10.1175/JCLI-D-14-00657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. H. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, https://doi.org/10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104, 942952, https://doi.org/10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and D. J. Shea, 1978: Estimates of the natural variability of time-averaged temperatures over the United States. Mon. Wea. Rev., 106, 16951703, https://doi.org/10.1175/1520-0493(1978)106<1695:EOTNVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1969: Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960’s. Mon. Wea. Rev., 97, 173192, https://doi.org/10.1175/1520-0493(1969)097<0173:SIBTNP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1978: Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106, 279295, https://doi.org/10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., W. C. Wang, and W. Gong, 2006: Model and observational analysis of the northeast U.S. regional climate and its relationship to the PNA and NAO patterns during early winter. Mon. Wea. Rev., 134, 34793505, https://doi.org/10.1175/MWR3234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., H. J. Lee, and D. M. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. J. Roy. Meteor. Soc., 4, 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and H. Lin, 2019: Modification of the wintertime Pacific–North American pattern related North American climate anomalies by the Asian–Bering–North American teleconnection. Climate Dyn., 53, 313328, https://doi.org/10.1007/s00382-018-4586-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 403 398 22
Full Text Views 156 155 7
PDF Downloads 207 205 9

The Temperature Anomaly Pattern of the Pacific–North American Teleconnection: Growth and Decay

Joseph P. ClarkaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Joseph P. Clark in
Current site
Google Scholar
PubMed
Close
and
Steven B. FeldsteinaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Applying composite analysis to ERA-Interim data, the surface air temperature (SAT) anomaly pattern of the Pacific–North American (PNA) teleconnection is shown to include both symmetric and asymmetric SAT anomalies with respect to the PNA phase. The symmetric SAT anomalies, overlying the Russian Far East and western and eastern North America, grow through advection of the climatological temperature by the anomalous meridional wind and vertical mixing. The asymmetric SAT anomalies, overlying Siberia during the positive PNA and the subtropical North Pacific during the negative PNA, grow through vertical mixing only. For all SAT anomalies, vertical mixing relocates the temperature anomalies of the PNA teleconnection pattern from higher in the boundary layer downward to the level of the SAT. Above the level of the SAT, temperature anomaly growth is caused by horizontal temperature advection in all locations except for the subtropical North Pacific, where adiabatic cooling dominates. SAT anomaly decay is caused by longwave radiative heating/cooling, except over Siberia, where SAT anomaly decay is caused by vertical mixing. Additionally, temperature anomaly decay higher in the boundary layer due to nonlocal mixing contributes indirectly to SAT anomaly decay by weakening downgradient diffusion. These results highlight a diverse array of mechanisms by which individual anomalies within the PNA pattern grow and decay. Furthermore, with the exception of Siberia, throughout the growth and decay stages, horizontal temperature advection and/or vertical mixing is nearly balanced by longwave radiative heating/cooling, with the former being slightly stronger during the growth stage and the latter during the decay stage.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph P. Clark, juc414@psu.edu

Abstract

Applying composite analysis to ERA-Interim data, the surface air temperature (SAT) anomaly pattern of the Pacific–North American (PNA) teleconnection is shown to include both symmetric and asymmetric SAT anomalies with respect to the PNA phase. The symmetric SAT anomalies, overlying the Russian Far East and western and eastern North America, grow through advection of the climatological temperature by the anomalous meridional wind and vertical mixing. The asymmetric SAT anomalies, overlying Siberia during the positive PNA and the subtropical North Pacific during the negative PNA, grow through vertical mixing only. For all SAT anomalies, vertical mixing relocates the temperature anomalies of the PNA teleconnection pattern from higher in the boundary layer downward to the level of the SAT. Above the level of the SAT, temperature anomaly growth is caused by horizontal temperature advection in all locations except for the subtropical North Pacific, where adiabatic cooling dominates. SAT anomaly decay is caused by longwave radiative heating/cooling, except over Siberia, where SAT anomaly decay is caused by vertical mixing. Additionally, temperature anomaly decay higher in the boundary layer due to nonlocal mixing contributes indirectly to SAT anomaly decay by weakening downgradient diffusion. These results highlight a diverse array of mechanisms by which individual anomalies within the PNA pattern grow and decay. Furthermore, with the exception of Siberia, throughout the growth and decay stages, horizontal temperature advection and/or vertical mixing is nearly balanced by longwave radiative heating/cooling, with the former being slightly stronger during the growth stage and the latter during the decay stage.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joseph P. Clark, juc414@psu.edu

Supplementary Materials

    • Supplemental Materials (PDF 6.81 MB)
Save