• Ayesiga, G., C. E. Holloway, C. J. Williams, G.-Y. Yang, and S. Ferrett, 2021: The observed synoptic scale precipitation relationship between western equatorial Africa and eastern equatorial Africa. Int. J. Climatol., 41, E582E601, https://doi.org/10.1002/joc.6711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., M. K. Flatau, P. J. Flatau, and A. J. Matthews, 2016: Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability. J. Geophys. Res. Atmos., 121, 20452059, https://doi.org/10.1002/2015JD024150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baranowski, D. B., and Coauthors, 2020: Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nat. Commun., 11, 2503, https://doi.org/10.1038/s41467-020-16171-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berhane, F., B. Zaitchik, and H. S. Badr, 2015: The Madden–Julian oscillation’s influence on spring rainy season precipitation over equatorial West Africa. J. Climate, 28, 86538672, https://doi.org/10.1175/JCLI-D-14-00510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., D. P. Rowell, E. J. Kendon, M. J. Roberts, R. A. Stratton, J. A. Crook, and C. Wilcox, 2019: Improved climatological precipitation characteristics over West Africa at convection-permitting scales. Climate Dyn., 53, 19912011, https://doi.org/10.1007/s00382-019-04759-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J., C. Klein, S. Folwell, C. M. Taylor, D. J. Parker, R. Stratton, and T. Stein, 2019: Assessment of the representation of West African storm lifecycles in convection-permitting simulations. Earth Space Sci., 6, 818835, https://doi.org/10.1029/2018EA000491.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., B. F. Zaitchik, and A. Gnanadesikan, 2015: Regional atmospheric circulation and rainfall variability in south equatorial Africa. J. Climate, 28, 809818, https://doi.org/10.1175/JCLI-D-14-00333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and O. Pauluis, 2011: Modulations of the phase speed of convectively coupled Kelvin waves by the ITCZ. J. Atmos. Sci., 68, 14461459, https://doi.org/10.1175/2011JAS3630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100, 25 78125 790, https://doi.org/10.1029/95JD02678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO, IFAD, and WFP, 2016: The state of food insecurity in the world: Meeting the 2015 international hunger targets: Taking stock of uneven progress. FAO/IFAD/WFP Rep., 62 pp.

    • Search Google Scholar
    • Export Citation
  • Ferrett, S., G.-Y. Yang, S. J. Woolnough, J. Methven, K. Hodges, and C. E. Holloway, 2020: Linking extreme precipitation in Southeast Asia to equatorial waves. Quart. J. Roy. Meteor. Soc., 146, 665684, https://doi.org/10.1002/qj.3699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., and Coauthors, 2019: Implications of improved representation of convection for the East Africa water budget using a convection-permitting model. J. Climate, 32, 21092129, https://doi.org/10.1175/JCLI-D-18-0387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., J. H. Marsham, D. P. Walker, C. E. Birch, B. J. Woodhams, L. S. Jackson, and S. Hardy, 2020: The effect of westerlies on East African rainfall and the associated role of tropical cyclones and the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 146, 647664, https://doi.org/10.1002/qj.3698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64, 20762090, https://doi.org/10.1175/JAS3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J., and C. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A., 2001: Cloud-base fluxes in the cumulus-capped boundary layer. Quart. J. Roy. Meteor. Soc., 127, 407421, https://doi.org/10.1002/qj.49712757209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., X. Jiang, and D. E. Waliser, 2014: Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden–Julian oscillation. J. Atmos. Sci., 71, 13711388, https://doi.org/10.1175/JAS-D-13-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. Climate, 24, 44514465, https://doi.org/10.1175/2011JCLI4021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2013: The activity of convectively coupled equatorial waves in CMIP3 global climate models. Theor. Appl. Climatol., 112, 697711, https://doi.org/10.1007/s00704-012-0761-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. S., R. J. Keane, D. L. Finney, J. H. Marsham, D. J. Parker, C. A. Senior, and R. A. Stratton, 2019: Regional differences in the response of rainfall to convectively coupled Kelvin waves over tropical Africa. J. Climate, 32, 81438165, https://doi.org/10.1175/JCLI-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, R., and Coauthors, 2018: Evaluating climate models with an African lens. Bull. Amer. Meteor. Soc., 99, 313336, https://doi.org/10.1175/BAMS-D-16-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. E. Carbone, and V. Levizzani, 2011: Cycles and propagation of deep convection over equatorial Africa. Mon. Wea. Rev., 139, 28322853, https://doi.org/10.1175/2011MWR3500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, https://doi.org/10.1002/qj.49712656902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and C. D. Thorncroft, 2016: On mechanisms that determine synoptic time scale convection over East Africa. Int. J. Climatol., 36, 40454057, https://doi.org/10.1002/joc.4614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, A. R. Aiyyer, and G. N. Kiladis, 2008: Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Climate, 21, 66496667, https://doi.org/10.1175/2008JCLI2008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20, 14871503, https://doi.org/10.1175/JCLI4059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., and J.-P. Duvel, 2008: Synoptic wave perturbations and convective systems over equatorial Africa. J. Climate, 21, 63726388, https://doi.org/10.1175/2008JCLI2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590635, https://doi.org/10.1002/2016RG000544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2018: The ITCZ and the seasonal cycle over equatorial Africa. Bull. Amer. Meteor. Soc., 99, 337348, https://doi.org/10.1175/BAMS-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and A. K. Dezfuli, 2013: The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part I: The boreal spring. J. Climate, 26, 4565, https://doi.org/10.1175/JCLI-D-11-00653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokam, W. M., L. A. T. Djiotang, and F. K. Mkankam, 2012: Atmospheric water vapor transport and recycling in equatorial Central Africa through NCEP/NCAR reanalysis data. Climate Dyn., 38, 17151729, https://doi.org/10.1007/s00382-011-1242-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlueter, A., 2020: Synoptic to intraseasonal variability of African rainfall. Oxford Research Encyclopedia of Climate Science, Oxford University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlueter, A., A. H. Fink, and P. Knippertz, 2019: A systematic comparison of tropical waves over northern Africa. Part II: Dynamics and thermodynamics. J. Climate, 32, 26052625, https://doi.org/10.1175/JCLI-D-18-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., and Coauthors, 2018: A pan-African convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa. J. Climate, 31, 34853508, https://doi.org/10.1175/JCLI-D-17-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, https://doi.org/10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., P. T. Haertel, and G. N. Kiladis, 2010: An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Climate, 23, 30313056, https://doi.org/10.1175/2009JCLI3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. Randall, 2012: A convective downdraft parameterization guided by high-resolution cloud modeling. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A53F-0189.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, https://doi.org/10.1175/2007JAS2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., G. N. Kiladis, and A. Suzuki-Parker, 2011: Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics. Climate Dyn., 36, 185203, https://doi.org/10.1007/s00382-009-0697-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2019b: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-12-1909-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2017: Convectively coupled Kelvin waves in CMIP5 coupled climate models. Climate Dyn., 48, 767781, https://doi.org/10.1007/s00382-016-3109-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Nguyen, 2015: Tropical meteorology and climate: Equatorial waves. Encyclopedia of Atmospheric Sciences, 2nd ed. F. Zhang, G. R. North, and J. A. Pyle, Eds., Elsevier, 23132325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B., J. Dias, G. Kiladis, E. Maloney, and M. Branson, 2020: Interactions between moisture and tropical convection. Part II: The convective coupling of equatorial waves. J. Atmos. Sci., 77, 18011819, https://doi.org/10.1175/JAS-D-19-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., 70, 35133532, https://doi.org/10.1175/JAS-D-13-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and B. Hoskins, 2016: ENSO-related variation of equatorial MRG and Rossby waves and forcing from higher latitudes. Quart. J. Roy. Meteor. Soc., 142, 24882504, https://doi.org/10.1002/qj.2842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, https://doi.org/10.1175/JAS4017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Slingo, and B. Hoskins, 2009: Convectively coupled equatorial waves in high-resolution Hadley Centre climate models. J. Climate, 22, 18971919, https://doi.org/10.1175/2008JCLI2630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. M. Slingo, 2011: Equatorial waves in opposite QBO phases. J. Atmos. Sci., 68, 839862, https://doi.org/10.1175/2010JAS3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and L. Gray, 2012: The influence of the QBO on the propagation of equatorial waves into the stratosphere. J. Atmos. Sci., 69, 29592982, https://doi.org/10.1175/JAS-D-11-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Methven, S. Woolnough, K. Hodges, and B. Hoskins, 2018: Linking African easterly wave activity with equatorial waves and the influence of Rossby waves from the Southern Hemisphere. J. Atmos. Sci., 75, 17831809, https://doi.org/10.1175/JAS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., S. Ferrett, S. Woolnough, J. Methven, and C. Holloway, 2021: Real-time identification of equatorial waves and evaluation of waves in global forecasts. Wea. Forecasting, 36, 171193, https://doi.org/10.1175/WAF-D-20-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebaze, S., A. Lenouo, C. Tchawoua, A. T. Gaye, and F. M. Kamga, 2017: Interaction between moisture transport and Kelvin waves events over equatorial Africa through ERA-Interim. Atmos. Sci. Lett., 18, 300306, https://doi.org/10.1002/asl.756.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 201 14
Full Text Views 48 47 3
PDF Downloads 70 68 6

Linking Equatorial African Precipitation to Kelvin Wave Processes in the CP4-Africa Convection-Permitting Regional Climate Simulation

View More View Less
  • 1 aDepartment of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 bSchool of Geographical Sciences, University of Bristol, Bristol, United Kingdom
  • | 3 cNational Centre for Atmospheric Sciences, University of Reading, Reading, United Kingdom
  • | 4 dMet Office, Exeter, United Kingdom
Restricted access

Abstract

Observational studies have shown the link between convectively coupled Kelvin waves (CCKWs) and eastward-propagating rainfall anomalies. We explore the mechanisms in which CCKWs modulate the propagation of precipitation from west to east over equatorial Africa. We examine a multiyear state-of-the-art Africa-wide climate simulation from a convection-permitting model (CP4A) along with a parameterized global driving-model simulation (G25) and evaluate both against observations (TRMM) and ERA-Interim (ERA-I), with a focus on precipitation and Kelvin wave activity. We show that the two important related processes through which CCKWs influence the propagation of convection and precipitation from west to east across equatorial Africa are 1) low-level westerly wind anomalies that lead to increased low-level convergence, and 2) westerly moisture flux anomalies that amplify the lower- to midtropospheric specific humidity. We identify Kelvin wave activity using zonal wind and geopotential height. Using lagged composite analysis, we show that modeled precipitation over equatorial Africa can capture the eastward-propagating precipitation signal that is associated with CCKWs. Composite analysis on strong (high-amplitude) CCKWs shows that both CP4A and G25 capture the connection between the eastward-propagating precipitation anomalies and CCKWs. In comparison to TRMM, however, the precipitation signal is weaker in G25, while CP4A has a more realistic signal. Results show that both CP4A and G25 generally simulate the key horizontal structure of CCKWs, with anomalous low-level westerlies in phase with positive precipitation anomalies. These findings suggest that for operational forecasting, it is important to monitor the day-to-day Kelvin wave activity across equatorial Africa.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Godwin Ayesiga, g.ayesiga@pgr.reading.ac.uk

Abstract

Observational studies have shown the link between convectively coupled Kelvin waves (CCKWs) and eastward-propagating rainfall anomalies. We explore the mechanisms in which CCKWs modulate the propagation of precipitation from west to east over equatorial Africa. We examine a multiyear state-of-the-art Africa-wide climate simulation from a convection-permitting model (CP4A) along with a parameterized global driving-model simulation (G25) and evaluate both against observations (TRMM) and ERA-Interim (ERA-I), with a focus on precipitation and Kelvin wave activity. We show that the two important related processes through which CCKWs influence the propagation of convection and precipitation from west to east across equatorial Africa are 1) low-level westerly wind anomalies that lead to increased low-level convergence, and 2) westerly moisture flux anomalies that amplify the lower- to midtropospheric specific humidity. We identify Kelvin wave activity using zonal wind and geopotential height. Using lagged composite analysis, we show that modeled precipitation over equatorial Africa can capture the eastward-propagating precipitation signal that is associated with CCKWs. Composite analysis on strong (high-amplitude) CCKWs shows that both CP4A and G25 capture the connection between the eastward-propagating precipitation anomalies and CCKWs. In comparison to TRMM, however, the precipitation signal is weaker in G25, while CP4A has a more realistic signal. Results show that both CP4A and G25 generally simulate the key horizontal structure of CCKWs, with anomalous low-level westerlies in phase with positive precipitation anomalies. These findings suggest that for operational forecasting, it is important to monitor the day-to-day Kelvin wave activity across equatorial Africa.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Godwin Ayesiga, g.ayesiga@pgr.reading.ac.uk
Save