• Aoyama, M., N. Kawano, T. Koizumi, and Y. Okada, 2011: Estimation of heat, water, and black carbon fluxes during the fire induced by the Hiroshima A-bomb. IPSHU English Research Rep. 28, 7 pp.

    • Search Google Scholar
    • Export Citation
  • Baba, M., F. Ogawa, S. Hiura, and N. Asada, 2011: Height estimation of Hiroshima A-bomb mushroom cloud from photos. Revisit the Hiroshima A-Bomb with a Database, M. Aoyama and Y. Oochi, Eds., City of Hiroshima, 5567.

    • Search Google Scholar
    • Export Citation
  • Bouzinaoui, A., R. Devienne, and J. R. Fontaine, 2007: An experimental study of the thermal plume developed above a finite cylindrical heat source to validate the point source model. Exp. Therm. Fluid Sci., 31, 649659, https://doi.org/10.1016/j.expthermflusci.2006.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, K. J., G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, 2020: Dedalus: A flexible framework for numerical simulations with spectral methods. Phys. Rev. Res., 2, 023068, https://doi.org/10.1103/PhysRevResearch.2.023068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carazzo, G., E. Kaminski, and S. Tait, 2006: The route to self-similarity in turbulent jets and plumes. J. Fluid Mech., 547, 137, https://doi.org/10.1017/S002211200500683X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrier, G., F. Fendell, and P. Feldman, 1985: Firestorms. Defense Nuclear Agency Tech. Rep. DNA-TR-81-102, 82 pp.

  • Ciriello, F., and G. R. Hunt, 2020: Analytical solutions and virtual origin corrections for forced, pure and lazy turbulent plumes based on a universal entrainment function. J. Fluid Mech., 893, A12, https://doi.org/10.1017/jfm.2020.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colomer, J., B. Boubnov, and H. Fernando, 1999: Turbulent convection from isolated sources. Dyn. Atmos. Oceans, 30, 125148, https://doi.org/10.1016/S0377-0265(99)00023-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., G. G. Rooney, and D. J. Thomson, 2010: Large-eddy simulation of a buoyant plume in uniform and stably stratified environments. J. Fluid Mech., 652, 75103, https://doi.org/10.1017/S0022112010000017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elicer-Cortés, J. C., 1998: Measurement of the temperature field in an axisymmetric thermal pure plume. Exp. Heat Transfer, 11, 207219, https://doi.org/10.1080/08916159808946562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, M., and J. Burelbach, 2001: Vertical mixing above a steady circular source of buoyancy. Int. J. Heat Mass Transfer, 44, 525536, https://doi.org/10.1016/S0017-9310(00)00134-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, J. R., R. Devienne, and S. Rose, 2006: Numerical simulation and experimental validation of plume flow from a heated disk. Numer. Heat Transfer, 50A, 645666, https://doi.org/10.1080/10407780600650720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2007: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys., 7, 33853398, https://doi.org/10.5194/acp-7-3385-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M., C. Härtel, and T. Fannelop, 1999: An experimental study of starting plumes over area sources. Nuovo Cimento, 22C, 835846.

    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., and N. G. Kaye, 2001: Virtual origin correction for lazy turbulent plumes. J. Fluid Mech., 435, 377396, https://doi.org/10.1017/S0022112001003871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaye, N. B., and G. R. Hunt, 2009: An experimental study of large area source turbulent plumes. Int. J. Heat Fluid Flow, 30, 10991105, https://doi.org/10.1016/j.ijheatfluidflow.2009.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, G. D., J. V. Pace III, and W. H. Scott Jr., 1983: Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki. ORNL Tech. Rep., 88 pp., https://doi.org/10.2172/6259209.

    • Search Google Scholar
    • Export Citation
  • Kofoed, P. and P. V. Nielsen, 1990: Thermal plumes in ventilated rooms: Measurements in stratified surroundings and analysis by use of an extrapolation method. Second Int. Conf. on Engineering Aero- and Thermodynamics of Ventilated Rooms, Oslo, Norway, Norsk VVS, B2-6.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, E. A., E. V. Kolesnik, and E. F. Khrapunov, 2019: Visualization of instability processes in pure thermal plume. J. Phys., 1382, 012020, https://doi.org/10.1088/1742-6596/1382/1/012020.

    • Search Google Scholar
    • Export Citation
  • Lecoanet, D., and N. Jeevanjee, 2019: Entrainment in resolved, dry thermals. J. Atmos. Sci., 76, 37853801, https://doi.org/10.1175/JAS-D-18-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lecoanet, D., and Coauthors, 2016: A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics. Mon. Not. Roy. Astron. Soc., 455, 42744288, https://doi.org/10.1093/mnras/stv2564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmoud, A., J. Bouslimi, and R. Maad, 2009: Experimental study of the effects of a thermal plume entrainment mode on the flow structure: Application to fire. Fire Saf. J., 44, 475486, https://doi.org/10.1016/j.firesaf.2008.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manins, P., 1985: Cloud heights and stratospheric injections resulting from a thermonuclear war. Atmos. Environ., 19, 12451255, https://doi.org/10.1016/0004-6981(85)90254-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moin, P., and K. Mahesh, 1998: Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech., 30, 539578, https://doi.org/10.1146/annurev.fluid.30.1.539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc., 234, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Paugam, R., M. Wooster, S. Freitas, M. Val, and Â. Martin, 2016: A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys., 16, 907925, https://doi.org/10.5194/acp-16-907-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J., L. Haselman Jr., and L. Edwards, 1986: Smoke-plume distributions above large-scale fires: Implications for simulations of “nuclear winter.” J. Appl. Meteor. Climatol., 25, 14341444, https://doi.org/10.1175/1520-0450(1986)025<1434:SPDALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plourde, F., M. V. Pham, S. D. Kim, and S. Balachandar, 2008: Direct numerical simulations of a rapidly expanding thermal plume: Structure and entrainment interaction. J. Fluid Mech., 604, 99123, https://doi.org/10.1017/S0022112008001006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popiolek, Z., and Z. Trzeciakiewicz, and S. Mierzwinski, 1998: Improvement of a plume volume flux calculation method. Proc. Sixth Int. Conf. on Air Distribution in Rooms, Stockholm, Sweden, KTH, 423430.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2015: MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. J. Atmos. Sci., 72, 36393646, https://doi.org/10.1175/JAS-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rooney, G., and P. Linden, 1996: Similarity considerations for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech., 318, 237250, https://doi.org/10.1017/S0022112096007100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech., 2, 583594, https://doi.org/10.1017/S0022112057000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep convection over land. Quart. J. Roy. Meteor. Soc, 138, 1135–1149, https://doi.org/10.1002/qj.1868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tajima, E., 1983: Estimation of the Hiroshima bomb yield and weather conditions at the time of the bomb. Second U.S.–Japan Workshop on Reassessment of Atomic Bomb Radiation Dosimetry, Hiroshima, Japan, Radiation Effects Research Foundation, 113.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., R. P. Turco, A. Robock, C. Bardeen, L. Oman, and G. L. Stenchikov, 2007: Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atmos. Chem. Phys., 7, 19732002, https://doi.org/10.5194/acp-7-1973-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1986: Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431471, https://doi.org/10.1017/S0022112086001222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuong Pham, M., F. Plourde, and S. Doan Kim, 2005: Three-dimensional characterization of a pure thermal plume. J. Heat Transfer, 127, 624636, https://doi.org/10.1115/1.1863275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and S. J. Ruuth, 2008: Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math., 26, 838855, http://global-sci.org/intro/article_detail/jcm/8663.html.

    • Search Google Scholar
    • Export Citation
  • Woods, A. W., 2010: Turbulent plumes in nature. Annu. Rev. Fluid Mech., 42, 391412, https://doi.org/10.1146/annurev-fluid-121108-145430.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 90 88 24
Full Text Views 37 37 8
PDF Downloads 46 46 11

A Closure for the Virtual Origin of Turbulent Plumes

View More View Less
  • 1 aDepartment of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
  • | 2 bClimate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
Restricted access

Abstract

An isolated source of surface buoyancy, be it a campfire or burning city, gives rise to a turbulent plume. Well above the surface, the plume properties asymptote to the well-known solutions of Morton, Taylor, and Turner (MTT), but a closure is still lacking for the virtual origin. A closure for the virtual origin is sought here in the case of a turbulent plume sustained by a circular source of surface buoyancy in an unstratified and unsheared fluid. In the high-Reynolds-number limit, it is argued that all such plumes asymptote to a single solution. Direct numerical simulation (DNS) of this solution exhibits a virtual origin located a distance below the surface equal to 1.1 times the radius of the buoyancy source. This solution is compared to the previously used assumption that the MTT plume is fully spun up at the surface, and that assumption is found to give buoyancies that are off by an order of magnitude. With regards to the citywide firestorm triggered by the nuclear attack on Hiroshima, it is found that the spun-up-at-surface MTT solution would have trapped radioactive soot within about a hundred meters of the surface, whereas the DNS solution presented here corroborates observations of the plume reaching well into the troposphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathaniel Tarshish, tarshish@berkeley.edu

Abstract

An isolated source of surface buoyancy, be it a campfire or burning city, gives rise to a turbulent plume. Well above the surface, the plume properties asymptote to the well-known solutions of Morton, Taylor, and Turner (MTT), but a closure is still lacking for the virtual origin. A closure for the virtual origin is sought here in the case of a turbulent plume sustained by a circular source of surface buoyancy in an unstratified and unsheared fluid. In the high-Reynolds-number limit, it is argued that all such plumes asymptote to a single solution. Direct numerical simulation (DNS) of this solution exhibits a virtual origin located a distance below the surface equal to 1.1 times the radius of the buoyancy source. This solution is compared to the previously used assumption that the MTT plume is fully spun up at the surface, and that assumption is found to give buoyancies that are off by an order of magnitude. With regards to the citywide firestorm triggered by the nuclear attack on Hiroshima, it is found that the spun-up-at-surface MTT solution would have trapped radioactive soot within about a hundred meters of the surface, whereas the DNS solution presented here corroborates observations of the plume reaching well into the troposphere.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nathaniel Tarshish, tarshish@berkeley.edu
Save