• Büker, M. L., M. H. Hitchman, G. J. Tripoli, R. B. Pierce, E. V. Browell, and J. A. Al-Saadi, 2008: Long-range convective ozone transport during INTEX. J. Geophys. Res., 113, D14S90, https://doi.org/10.1029/2007JD009345.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W., and J. K. S. Ching, 1999: Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system. EPA Rep. EPA/600/R-99/030, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Xie, J. Cai, D. Chen, B. Gao, B. He, N. Cheng, and B. Xu, 2018: Understanding meteorological influences on PM2.5 values across China: A temporal and spatial perspective. Atmos. Chem. Phys., 18, 53435358, https://doi.org/10.5194/acp-18-5343-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and D. D. Davis, 1995: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res., 100, 89939005, https://doi.org/10.1029/95JD00275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2004: Effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res., 109, D23301, https://doi.org/10.1029/2004JD005209.

    • Search Google Scholar
    • Export Citation
  • Doherty, R. M., D. S. Stevenson, W. J. Collins, and M. G. Sanderson, 2005: Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model. Atmos. Chem. Phys., 5, 32053218, https://doi.org/10.5194/acp-5-3205-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, B. N., S. E. Strahan, Y. Yoshida, S. D. Steenrod, and N. Livesey, 2007: Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys., 7, 37133736, https://doi.org/10.5194/acp-7-3713-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112, D23104, https://doi.org/10.1029/2007JD008945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., J. R. Holton, and H. Rosenlof, 1997: Mass fluxes of O3, CH4, N2O, and CF2Cl2 in the lower stratosphere calculated from observational data. J. Geophys. Res., 102, 19 14910 159, https://doi.org/10.1029/97JD01014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, https://doi.org/10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., M. L. Buker, G. J. Tripoli, R. B. Pierce, J. A. Al-Saadi, E. V. Browell, and M. A. Avery, 2004: A modeling study of an East Asian convective complex during March 2001. J. Geophys. Res., 109, D15S14, https://doi.org/10.1029/2003JD004312.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R, P. H. Haynes, M. E. McIntyre, A. R. Douglass, and B. Rood, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, X., B. Zhu, D. Fei, and D. Wang, 2015: The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. Sci. Total Environ., 502, 641649, https://doi.org/10.1016/j.scitotenv.2014.09.075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, J., M. J. Prather, and O. Wild, 2005: Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model. J. Geophys. Res., 110, D19305, https://doi.org/10.1029/2005JD006045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodayari, A., F. Vitt, D. Phoenix, and D. J. Wuebbles, 2018: The impact of NOx emissions from lightning on the production of aviation-induced ozone. Atmos. Environ., 187, 410416, https://doi.org/10.1016/j.atmosenv.2018.05.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5, 369411, https://doi.org/10.5194/gmd-5-369-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and P. J. Crutzen, 1994: Role of deep cloud convection in the ozone budget of the troposphere. Science, 264, 17591761, https://doi.org/10.1126/science.264.5166.1759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and Coauthors, 2018: The South Asian monsoon—Pollution pump and purifier. Science, 361, 270273, https://doi.org/10.1126/science.aar2501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Yin, L. Jin, and C. Zhang, 2010: A numerical study of tropical deep convection using WRF Model. J. Trop. Meteor., 16, 247254.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2005: North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone. J. Geophys. Res., 110, D10301, https://doi.org/10.1029/2004JD005039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liaskos, C. E., D. J. Allen, and K. E. Pickering, 2015: Sensitivity of tropical tropospheric composition to lightning NOx production as determined by replay simulations with GEOS-5. J. Geophys. Res. Atmos., 120, 85128534, https://doi.org/10.1002/2014JD022987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. Geosci. Model Dev., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2016: Global distribution of deep convection reaching tropopause in 1 year GPM observations. J. Geophys. Res. Atmos., 121, 38243842, https://doi.org/10.1002/2015JD024430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., X. S. Wang, Y. T. Hu, J. Y. Zheng, L. J. Zhong, M. Hu, and Y. H. Zhang, 2012: Numerical simulation and process analysis of PM10 pollution over the Pearl River delta in autumn. China Environ. Sci., 32, 15371545.

    • Search Google Scholar
    • Export Citation
  • Lu, X., and Coauthors, 2018: Severe surface ozone pollution in China: A global perspective. Environ. Sci. Technol. Lett., 5, 487494, https://doi.org/10.1021/acs.estlett.8b00366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mebust, M. R., B. K. Eder, F. S. Binkowski, and S. J. Roselle, 2003: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 2. Model evaluation. J. Geophys. Res. Atmos., 108, 4184, https://doi.org/10.1029/2001jd001410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, D. E. Kinnison, R. R. Garcia, and W. Choi, 2004: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res., 109, D03302, https://doi.org/10.1029/2003JD003706.

    • Search Google Scholar
    • Export Citation
  • Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang, 2007: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112, D16309, https://doi.org/10.1029/2006JD008294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, R. B., and Coauthors, 2003: Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over East Asia. J. Geophys. Res., 108, 8825, https://doi.org/10.1029/2002JD003176.

    • Search Google Scholar
    • Export Citation
  • Ploeger, F., P. Konopka, K. Walker, and M. Riese, 2017: Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere. Atmos. Chem. Phys., 17, 70557066, https://doi.org/10.5194/acp-17-7055-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611614, https://doi.org/10.1126/science.1182274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, R., 2015: Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys., 15, 43994981, https://doi.org/10.5194/acp-15-4399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, https://doi.org/10.1126/science.1206027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., M. J. Prather, and J. Hsu, 2011: Stratosphere-troposphere exchange ozone flux related to deep convection. Geophys. Res. Lett., 38, L03806, https://doi.org/10.1029/2010GL046039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., 1994: Convective transport over the central United States and its role in regional CO and ozone budgets. J. Geophys. Res., 99, 18 70318 711, https://doi.org/10.1029/94jd01244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W., M. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus, 60B, 622635, https://doi.org/10.1111/j.1600-0889.2008.00338.x.

    • Search Google Scholar
    • Export Citation
  • Vernier, J. P., L. W. Thomason, and J. Kar, 2011: CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett., 38, L07804, https://doi.org/10.1029/2010GL046614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernier, J. P., and Coauthors, 2015: Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. Atmos., 20, 16081619, https://doi.org/10.1002/2014JD022372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Zhang, J. Hao, and M. Luo, 2011: Seasonal and spatial variability of surface ozone over China: Contributions from background and domestic pollution. Atmos. Chem. Phys., 11, 35113525, https://doi.org/10.5194/acp-11-3511-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and Coauthors, 2015: The modelling infrastructure of the Integrated Forecasting System: Recent advances and future challenges. ECMWF Tech. Memo. 760, 50, pp.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., 4, 134138.

  • Yoo, J. M., and Coauthors, 2014: New indices for wet scavenging of air pollutants (O3, CO, NO2, SO2, and PM10) by summertime rain. Atmos. Environ., 82, 226237, https://doi.org/10.1016/j.atmosenv.2013.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, P., and Coauthors, 2017: Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl. Acad. Sci. USA, 114, 69726977, https://doi.org/10.1073/pnas.1701170114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Wang, Q. Yang, R. Fu, D. Cunnold, and Y. Choi, 2010: Impact of East Asian summer monsoon on the air quality over China: View from space. J. Geophys. Res., 115, D09301, https://doi.org/10.1029/2009JD012745.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 387 382 23
Full Text Views 56 56 3
PDF Downloads 63 63 13

Cross-Tropopause Transport of Surface Pollutants during the Beijing 21 July Deep Convection Event

View More View Less
  • 1 aSchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
  • | 2 bNational Satellite Meteorological Center, Beijing, China
  • | 3 cSchool of Atmosphere Sciences, Sun Yat-Sen University, Zhuhai, China
  • | 4 dDepartment of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts
  • | 5 eState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 6 fLATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
  • | 7 gGuangdong–Hong Kong–Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
Restricted access

Abstract

Air transport from the troposphere to the stratosphere plays an important role in altering the vertical distribution of pollutants in the upper troposphere and lower stratosphere (UTLS). On 21 July 2012, Beijing was hit by an unprecedented extreme rainfall event. In the present study, the Community Multiscale Air Quality Modeling System (CMAQ) is used to simulate the change in vertical profiles of pollutants during this event. The integrated process rate (IPR) method was applied to quantify the relative contributions from different atmospheric processes to the changes in the vertical profile of pollutants and to estimate the vertical transport flux across the tropopause. The results revealed that, in the tropopause layer, during the torrential rainfall event, the values of O3 decreased by 35% and that of CO increased by 98%, while those of SO2, NO2, and PM2.5 increased slightly. Atmospheric transport was the main cause for the change in O3 values, contributing 32% of the net increase and 99% of the net decrease of O3. The calculations showed that the transport masses of CO, O3, PM2.5, NO2, and SO2 to the stratosphere by this deep convection in 25 h were 6.0 × 107, 2.4 × 107, 7.9 × 105, 2.2 × 105, and 2.7 × 103 kg, respectively, within the ∼300 km × 300 km domain. In the midlatitudes of the Northern Hemisphere, penetrating deep convective activities can transport boundary layer pollutants into the UTLS layer, which will have a significant impact on the climate of this layer.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuemei Wang, eciwxm@jnu.edu.cn; Fuxiang Huang, huangfx@cma.cn

Abstract

Air transport from the troposphere to the stratosphere plays an important role in altering the vertical distribution of pollutants in the upper troposphere and lower stratosphere (UTLS). On 21 July 2012, Beijing was hit by an unprecedented extreme rainfall event. In the present study, the Community Multiscale Air Quality Modeling System (CMAQ) is used to simulate the change in vertical profiles of pollutants during this event. The integrated process rate (IPR) method was applied to quantify the relative contributions from different atmospheric processes to the changes in the vertical profile of pollutants and to estimate the vertical transport flux across the tropopause. The results revealed that, in the tropopause layer, during the torrential rainfall event, the values of O3 decreased by 35% and that of CO increased by 98%, while those of SO2, NO2, and PM2.5 increased slightly. Atmospheric transport was the main cause for the change in O3 values, contributing 32% of the net increase and 99% of the net decrease of O3. The calculations showed that the transport masses of CO, O3, PM2.5, NO2, and SO2 to the stratosphere by this deep convection in 25 h were 6.0 × 107, 2.4 × 107, 7.9 × 105, 2.2 × 105, and 2.7 × 103 kg, respectively, within the ∼300 km × 300 km domain. In the midlatitudes of the Northern Hemisphere, penetrating deep convective activities can transport boundary layer pollutants into the UTLS layer, which will have a significant impact on the climate of this layer.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuemei Wang, eciwxm@jnu.edu.cn; Fuxiang Huang, huangfx@cma.cn

Supplementary Materials

    • Supplemental Materials (PDF 470 KB)
Save