• Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borisenko, A. I., and I. E. Tarapov, 1979: Vector and Tensor Analysis with Applications. Dover, 257 pp.

  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 175–189.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2000: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57, 715736, https://doi.org/10.1175/1520-0469(2000)057<0715:ALMFBG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2001: Computation of a solenoid as a ratio of areas and a geometric interpretation of the Arakawa Jacobian. Mon. Wea. Rev., 129, 345353, https://doi.org/10.1175/1520-0493(2001)129<0345:COASAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2006: Integrals of the vorticity equation. Part I: General three- and two-dimensional flows. J. Atmos. Sci., 63, 598610, https://doi.org/10.1175/JAS3646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, https://doi.org/10.1175/2007JAS2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2015a: Formulas for parcel velocity and vorticity in a rotating Cartesian coordinate system. J. Atmos. Sci., 72, 39083922, https://doi.org/10.1175/JAS-D-15-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2015b: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2017: Roles of streamwise and transverse partial-vorticity components in steady inviscid isentropic supercell-like flows. J. Atmos. Sci., 74, 30213041, https://doi.org/10.1175/JAS-D-16-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2021: Invented forces in supercell models. J. Atmos. Sci., 78, 29272939, https://doi.org/10.1175/JAS-D-21-0082.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 105–114.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 12041215, https://doi.org/10.1175/JAS-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and P. Markowski, 2021: Circulation around a constrained curve: An alternative analysis tool for diagnosing the origins of tornado rotation in numerical supercell simulations. J. Atmos. Sci., 78, 28952909, https://doi.org/10.1175/JAS-D-21-0020.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Provincial Park, AB, Canada, Amer. Meteor. Soc, 588–592.

  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167222, https://doi.org/10.1175/0065-9401-28.50.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’haeseleer, W. D., W. N. G. Hitchon, J. D. Callen, and J. L. Shohet, 1991: Flux Coordinates and Magnetic Field Structure. Springer-Verlag, 241 pp.

    • Crossref
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated storms. Mon. Wea. Rev., 121, 20052029, https://doi.org/10.1175/1520-0493(1993)121<2005:TIOHON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 1976: The Ceaseless Wind. McGraw-Hill, 579 pp.

  • Fujita, T. T., 1959: Detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Weather Bureau Tech. Rep. 5, 29 pp.

  • Fujita, T. T., 1975: New evidence from April 3–4, 1974 tornadoes. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 248–255.

  • Kanehisa, H., 2002: A nonlinear extension of the helicity formula for convective storms. J. Meteor. Soc. Japan, 80, 13011306, https://doi.org/10.2151/jmsj.80.1301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, https://doi.org/10.1146/annurev.fl.19.010187.002101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1945: Hydrodynamics. Dover, 738 pp.

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

    • Crossref
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126140, https://doi.org/10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margenau, H., and G. M. Murphy, 1956: The Mathematics of Physics and Chemistry. 2nd ed. Van Nostrand, 604 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. K., and A. N. Michel, 1982: Ordinary Differential Equations. Academic Press, 351 pp.

  • Mobbs, S. D., 1981: Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid Mech., 108, 475483, https://doi.org/10.1017/S002211208100222X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., 2019: A violently tornadic supercell thunderstorm simulation spanning a quarter-trillion grid volumes: Computational challenges, I/O framework, and visualizations of tornadogenesis. Atmosphere, 10, 578, https://doi.org/10.3390/atmos10100578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, and D. T. Dawson, 2020: The effect of surface drag strength on mesocyclone intensification and tornadogenesis in idealized supercell simulations. J. Atmos. Sci., 77, 16991721, https://doi.org/10.1175/JAS-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577586, https://doi.org/10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., P. M. Markowski, and G. H. Bryan, 2017: “Near ground” vertical vorticity in supercell thunderstorm models. J. Atmos. Sci., 74, 17571766, https://doi.org/10.1175/JAS-D-16-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

    • Crossref
    • Export Citation
  • Scorer, R. S., 1997: Dynamics of Meteorology and Climate. Praxis, 686 pp.

  • Shapiro, A. H., 1972: Vorticity. Illustrated Experiments in Fluid Mechanics: The NCFMF Book of Film Notes, MIT Press, 63–74, http://web.mit.edu/hml/ncfmf/09VOR.pdf.

  • Smith, R. K., and L. M. Leslie, 1979: A numerical study of tornadogenesis in a rotating thunderstorm. Quart. J. Roy. Meteor. Soc., 105, 107127, https://doi.org/10.1002/qj.49710544308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113133, https://doi.org/10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, A. R., M. C. Coniglio, and C. L. Ziegler, 2018: Comparison of near- and far-field supercell inflow environments using radiosonde observations. Mon. Wea. Rev., 146, 24032415, https://doi.org/10.1175/MWR-D-17-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 211 208 35
Full Text Views 108 107 28
PDF Downloads 126 125 28

Theory of Parcel Vorticity Evolution in Supercell-Like Flows

View More View Less
  • 1 aNOAA/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

In a prior paper, insights into tornadogenesis in supercell storms were gained by discovering analytical formulas for vorticity variations along streamlines in idealized, steady, frictionless, isentropic inflows of dry air imported from a horizontally uniform environment. This work is simplified and extended to the evolution of parcel vorticity in unsteady, nonisentropic flows by integrating the vorticity equation using nonorthogonal Lagrangian coordinates. The covariant basis vectors e¯1, e¯2, and e¯3 are material line elements attached to each parcel. Initially they form an orthonormal set with e¯1 in the direction of and e¯2 left normal to the storm-relative wind at each level in the environment, and e¯3 upward. The surface containing all parcels with the same initial height constitutes a material surface, within which initially streamwise and transverse material lines are reoriented and stretched or shrunk. The basis vectors propagate a parcel’s barotropic vorticity through time by factoring in the “frozen-field” effect. With a horizontally uniform environment, the barotropic vorticity of a parcel depends on its initial streamwise vorticity times its current e¯1 plus its initial crosswise vorticity times its current e¯2. For baroclinic and frictional vorticity, each contravariant component is the integral from initial to current time of the corresponding contravariant component of the generation vector. The “river-bend” effect acting on all parts (baroclinic, frictional, and barotropic) of transverse vorticity produces streamwise vorticity (parallel to 3D wind). In left-turning steady flow, it arises from e¯2 rotating toward e¯1. For steady, frictionless, dry isentropic flow, previous vorticity formulas are recovered.

Significance Statement

Air parcels rising in a tornado spin rapidly about their direction of motion. Theory herein describes the processes that can produce this streamwise spin in supercells. Cyclonic updraft rotation originates from strong low-level environmental storm-relative winds that turn clockwise with height. Parcels flowing into the updraft have initially large streamwise spins that are amplified by streamwise stretching. Rain curtains falling through the cyclonic updraft cause other parcels to descend and turn leftward. Buoyancy and frictional torques give them horizontal spin. Even if these spins are transverse to the flow initially, they are turned streamwise by secondary flow that develops in left-hand bends. As the parcels reach the ground and converge into the tornado, streamwise stretching greatly magnifies their streamwise spins.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Davies-Jones: Emeritus.

Corresponding author: Robert Davies-Jones, bobdj1066@yahoo.com

Abstract

In a prior paper, insights into tornadogenesis in supercell storms were gained by discovering analytical formulas for vorticity variations along streamlines in idealized, steady, frictionless, isentropic inflows of dry air imported from a horizontally uniform environment. This work is simplified and extended to the evolution of parcel vorticity in unsteady, nonisentropic flows by integrating the vorticity equation using nonorthogonal Lagrangian coordinates. The covariant basis vectors e¯1, e¯2, and e¯3 are material line elements attached to each parcel. Initially they form an orthonormal set with e¯1 in the direction of and e¯2 left normal to the storm-relative wind at each level in the environment, and e¯3 upward. The surface containing all parcels with the same initial height constitutes a material surface, within which initially streamwise and transverse material lines are reoriented and stretched or shrunk. The basis vectors propagate a parcel’s barotropic vorticity through time by factoring in the “frozen-field” effect. With a horizontally uniform environment, the barotropic vorticity of a parcel depends on its initial streamwise vorticity times its current e¯1 plus its initial crosswise vorticity times its current e¯2. For baroclinic and frictional vorticity, each contravariant component is the integral from initial to current time of the corresponding contravariant component of the generation vector. The “river-bend” effect acting on all parts (baroclinic, frictional, and barotropic) of transverse vorticity produces streamwise vorticity (parallel to 3D wind). In left-turning steady flow, it arises from e¯2 rotating toward e¯1. For steady, frictionless, dry isentropic flow, previous vorticity formulas are recovered.

Significance Statement

Air parcels rising in a tornado spin rapidly about their direction of motion. Theory herein describes the processes that can produce this streamwise spin in supercells. Cyclonic updraft rotation originates from strong low-level environmental storm-relative winds that turn clockwise with height. Parcels flowing into the updraft have initially large streamwise spins that are amplified by streamwise stretching. Rain curtains falling through the cyclonic updraft cause other parcels to descend and turn leftward. Buoyancy and frictional torques give them horizontal spin. Even if these spins are transverse to the flow initially, they are turned streamwise by secondary flow that develops in left-hand bends. As the parcels reach the ground and converge into the tornado, streamwise stretching greatly magnifies their streamwise spins.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Davies-Jones: Emeritus.

Corresponding author: Robert Davies-Jones, bobdj1066@yahoo.com
Save