• Allen, C. J. T., and R. Washington, 2014: The low‐level jet dust emission mechanism in the central Sahara: Observations from Bordj‐Badji Mokhtar during the June 2011 Fennec Intensive Observation Period. J. Geophys. Res. Atmos., 119, 29903015, https://doi.org/10.1002/2013JD020594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the Western Weddell Sea. Bound.-Layer Meteor., 97, 459486, https://doi.org/10.1023/A:1002793831076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, S. G. Benjamin, and Y.-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev., 110, 11871213, https://doi.org/10.1175/1520-0493(1982)110<1187:TEOTME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristov, S. N., and P. G. Frik, 1988: Large-scale turbulence in a thin layer of nonisothermal rotating fluid. Fluid Dyn., 23, 522528, https://doi.org/10.1007/BF01055074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ARM, 2010: Doppler Lidar Profiles (DLPROFWIND4NEWS): 2010-11-02 to 2021-02-09. Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), ARM Data Center, Data (Basel), (set), accessed 16 February 2021, http://dx.doi.org/10.5439/1190027.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, 2009: A climatology of low- level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, https://doi.org/10.1175/2009JAMC1965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887, https://doi.org/10.2478/s11600-007-0049-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, https://doi.org/10.1029/98JD01020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, B. Jonkman, and W. A. Brewer, 2008: Doppler lidar measurements of the Great Plains low-level jet: Applications to wind energy. IOP Conf. Ser. Earth Environ. Sci., 1, 012020, https://doi.org/10.1088/1755-1315/1/1/012020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, https://doi.org/10.1175/BAMS-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J. W., S. A. Michelson, P. O. G. Persson, I. V. Djalalova, and J. M. Wilczak, 2008: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J. Appl. Meteor. Climatol., 47, 23722394, https://doi.org/10.1175/2008JAMC1822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 307329, https://doi.org/10.1175/1520-0493(1986)114<0307:SEOSHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., L. D. Riihimaki, Y. Qian, H. Yan, and M. Huang, 2015: The low-level jet over the southern Great Plains determined from observations and reanalyses and its impact on moisture transport. J. Climate, 28, 66826706, https://doi.org/10.1175/JCLI-D-14-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyrich, F., D. Kalass, and U. Weisensee, 1997: Influence of the nocturnal low-level jet on the vertical and mesoscale structure of the stable boundary layer as revealed from Doppler-sodar-observations. Acoustic Remote Sensing Applications, S. P. Singal, Ed., Narosa Publishing House, 236246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., P. M. Klein, and P. B. Chilson, 2020: Contrasting characteristics and evolution of southerly low-level jets during different boundary-layer regimes. Bound.-Layer Meteor., 174, 179202, https://doi.org/10.1007/s10546-019-00481-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south- central United States in summer. Mon. Wea. Rev., 98, 735744, https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brook, R. R., 1985: The Koorin nocturnal low-level jet. Bound.-Layer Meteor., 32, 133154, https://doi.org/10.1007/BF00120932.

  • Buajitti, K., and A. K. Blackadar, 1957: Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486500, https://doi.org/10.1002/qj.49708335804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20, 203226, https://doi.org/10.3402/tellusa.v20i2.10002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and corresponding mixed layer depths during PECAN. J. Geophys. Res. Atmos., 124, 91419160, https://doi.org/10.1029/2019JD030658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandler, C., P. Cheney, P. Thomas, L. Trabaud, and D. Williams, 1991: Fire in forestry. Forest Fire Behavior and Effects, Vol. 1, Krieger Publishing Co., 441 pp.

    • Search Google Scholar
    • Export Citation
  • Charney, J. J., X. Bian, B. E. Potter, and W. E. Heilman, 2003: Low level jet impacts on fire evolution in the Mack Lake and other severe wildfires. Fifth Symp. on Fire and Forest Meteorology/Second Int. Wildland Fire Ecology and Fire Management Congress, Orlando, FL, Amer. Meteor. Soc., 1.5.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, T. Iwasaki, and Z. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145, 33653389, https://doi.org/10.1175/MWR-D-16-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., N. Kalthoff, O. Kolle, M. Kotzian, and F. Fiedler, 1997: Ozone concentration jump in the stable nocturnal boundary-layer during a LLJ-event. Atmos. Environ., 31, 19771989, https://doi.org/10.1016/S1352-2310(96)00358-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosack, N., S. Emeis, and M. Kühn, 2007: On the influence of low-level jets on energy production and loading of wind turbines. Wind Energy, J. Peinke, P. Schaumann, and S. Barth, Eds., Springer, https://doi.org/10.1007/978-3-540-33866-6_61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, K. Schäfer, S. Emeis, A. P. Protonotariou, E. Bossioli, N. Soulakellis, and P. Suppan, 2009: A comparison between modelled and measured mixing-layer height over Munich. Bound.-Layer Meteor., 131, 425440, https://doi.org/10.1007/s10546-009-9373-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dentoni, M. C., G. E. Defossé, J. C. Labraga, and H. F. del Valle, 2001: Atmospheric and fuel conditions related to the Puerto Madryn fire of 21 January, 1994. Meteor. Appl., 8, 361370, https://doi.org/10.1017/S1350482701003127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, V. A., and R. A. Farrow, 1988: The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol., 33, 183210, https://doi.org/10.1146/annurev.en.33.010188.001151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. Chen, 2019: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32, 88138833, https://doi.org/10.1175/JCLI-D-19-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. Zhang, Y. Ying, and Y. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891903, https://doi.org/10.2151/jmsj.2012-603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. Zhang, Y.-L. Chen, Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, https://doi.org/10.1175/JCLI-D-13-00571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., 1985: Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci., 42, 18591867, https://doi.org/10.1175/1520-0469(1985)042<1859:SWATAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2013: Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation. Springer, 196 pp.

  • Fiedler, B. H., 1999: Thermal convection in a layer bounded by uniform heat flux: Application of a strongly nonlinear analytical solution. Geophys. Astrophys. Fluid Dyn., 91, 223250, https://doi.org/10.1080/03091929908203705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen, 2013: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos., 118, 61006121, https://doi.org/10.1002/jgrd.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J. M., H. Liu, J. Huang, and Q. Fu, 2016: Taklimakan Desert nocturnal low-level jet: Climatology and dust activity. Atmos. Chem. Phys., 16, 77737783, https://doi.org/10.5194/acp-16-7773-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., and A. Shapiro, 2019: Clarifying the baroclinic contribution to the Great Plains low-level jet frequency maximum. Mon. Wea. Rev., 147, 34813493, https://doi.org/10.1175/MWR-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, M. M., and B. E. Launder, 1978: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech., 86, 491511, https://doi.org/10.1017/S0022112078001251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, L. N., 1972: Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes. Israel Program for Scientific Translations, 224 pp.

    • Search Google Scholar
    • Export Citation
  • Hart, J. E., 1972: Stability of thin non-rotating Hadley circulations. J. Atmos. Sci., 29, 687697, https://doi.org/10.1175/1520-0469(1972)029<0687:SOTNRH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinold, B., P. Knippertz, J. Marsham, S. Fiedler, N. Dixon, K. Schepanski, B. Laurent, and I. Tegen, 2013: The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos., 118, 43854400, https://doi.org/10.1002/jgrd.50402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Higgins, R. W., Y. Yao, E. S. Yaresh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, https://doi.org/10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1965: Comparative physical behavior of southerly boundary-layer wind jets. Mon. Wea. Rev., 93, 133144, https://doi.org/10.1175/1520-0493(1965)093<0133:CPBOSB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19A, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, J. F., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495520, https://doi.org/10.1023/A:1001788515355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingel, L. Kh., 1996: Approximate analytical solution of the nonlinear problem of a flow over a thermally inhomogeneous underlying surface. Meteor. Atmos. Phys., 58, 1319, https://doi.org/10.1007/BF01027553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isard, S. A., and S. H. Gage, 2001: Flow of Life in the Atmosphere: An Airscape Approach to Understanding Invasive Organisms. Michigan State University Press, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., and R. D. Kouznetsov, 2012: Low-level jets in the Moscow region in summer and winter observed with a sodar network. Bound.-Layer Meteor., 143, 159175, https://doi.org/10.1007/s10546-011-9639-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitamura, Y., A. Hori, and T. Yagi, 2013: Flux Richardson number and turbulent Prandtl number in a developing stable boundary layer. J. Meteor. Soc. Japan, 91, 655666, https://doi.org/10.2151/jmsj.2013-507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, https://doi.org/10.1007/s10546-013-9864-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, A. Shapiro, and M. Xue, 2016: Linkages between boundary-layer structure and development of nocturnal low-level jets in central Oklahoma. Bound.-Layer Meteor., 158, 383408, https://doi.org/10.1007/s10546-015-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurbatskiy, A. F., and L. I. Kurbatskaya, 2011: Efficiency of eddy mixing in a stable stratified atmospheric boundary layer. J. Appl. Mech. Tech. Phys., 52, 883888, https://doi.org/10.1134/S0021894411060058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • La Sorte, F. A., and Coauthors, 2014: The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr., 41, 16851696, https://doi.org/10.1111/jbi.12328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence induced by a mountain wave. J. Atmos. Sci., 35, 5977, https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., D. A. Speheger, M. A. Day, G. P. Murdoch, B. R. Smith, N. J. Nauslar, and D. C. Daily, 2019: Megafires on the southern Great Plains. J. Oper. Meteor., 7, 164179, https://doi.org/10.15191/nwajom.2019.0712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macklin, S. A., N. A. Bond, and J. P. Walker, 1990: Structure of a low-level jet over lower Cook Inlet, Alaska. Mon. Wea. Rev., 118, 25682578, https://doi.org/10.1175/1520-0493(1990)118<2568:SOALLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2005: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, https://doi.org/10.1007/s10546-005-9017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, H., and R. Talbot, 2004: Role of meteorological processes in two New England ozone episodes during summer 2001. J. Geophys. Res., 109, D20305, https://doi.org/10.1029/2004JD004850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medelfef, A., D. Henry, A. Bouabdallah, S. Kaddeche, and R. Boussaa, 2017: Effect of rotation on the stability of side-heated buoyant convection between infinite horizontal walls. Phys. Rev. Fluids, 2, 093902, https://doi.org/10.1103/PhysRevFluids.2.093902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, J. F., and C. Normand, 1996: Buoyant-thermocapillary instabilities of differentially heated liquid layers. Phys. Fluids, 8, 14331445, https://doi.org/10.1063/1.868920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., S. Liu, L. Sheng, S. Huang, and J. Li, 2019: Influence of boundary layer structure and low-level jet on PM2.5 pollution in Beijing: A case study. Int. J. Environ. Res. Pub. Health, 16, 616, https://doi.org/10.3390/ijerph16040616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, https://doi.org/10.1175/2010JCLI3515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, M. I., E. L. Nascimento, and C. Kannenberg, 2018: A new look at the identification of low-level jets in South America. Mon. Wea. Rev., 146, 23152334, https://doi.org/10.1175/MWR-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2016: A comparative study of the 3 June 2015 Great Plains low-level jet. Mon. Wea. Rev., 144, 29632979, https://doi.org/10.1175/MWR-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, https://doi.org/10.1175/2010JAS3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94105, https://doi.org/10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., R. D. Clark, and T. D. Sikora, 2020: Nocturnal destabilization associated with the summertime Great Plains low-level jet. Mon. Wea. Rev., 148, 46414656, https://doi.org/10.1175/MWR-D-19-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258, https://doi.org/10.1175/1520-0493(1991)119<1242:TFSOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal-dryline merger. Mon. Wea. Rev., 128, 38243838, https://doi.org/10.1175/1520-0493(2001)129<3824:TMSOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, N. T., K. Nakamura, F. A. Furuzawa, and S. Satoh, 2008: Characteristics of low level jets over Okinawa in the Baiu and post-Baiu seasons revealed by wind profiler observations. J. Meteor. Soc. Japan, 86, 699717, https://doi.org/10.2151/jmsj.86.699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G., and S. Zhong, 2008: An observational history of small-scale katabatic winds in mid-latitudes. Geogr. Compass, 2, 17981821, https://doi.org/10.1111/j.1749-8198.2008.00166.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2018: Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 146, 30533078, https://doi.org/10.1175/MWR-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, https://doi.org/10.1175/2010JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepanski, K., I. Tegen, M. C. Todd, B. Heinold, G. Boenisch, B. Laurent, and A. Macke, 2009: Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res., 114, D10201, https://doi.org/10.1029/2008JD010325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shamoun-Baranes, F. L., and W. M. G. Vansteelant, 2017: Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol., 203A, 509529, https://doi.org/10.1007/s00359-017-1181-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2007: Katabatic flow along a differentially cooled sloping surface. J. Fluid Mech., 571, 149175, https://doi.org/10.1017/S0022112006003302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and J. G. Gebauer, 2018: Mesoscale ascent in nocturnal low-level jets. J. Atmos. Sci., 75, 14031427, https://doi.org/10.1175/JAS-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharan, M., and S. G. Gopalakrishnan, 1997: Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modeling. J. Appl. Meteor., 36, 545559, https://doi.org/10.1175/1520-0450(1997)036<0545:CEOEEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shvarts, K. G., and A. Boudlal, 2010: Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary. J. Phys. Conf. Ser., 216, 012005, https://doi.org/10.1088/1742-6596/216/1/012005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sladkovic, R., and H.-J. Kanter, 1977: Low-level jet in the Bavarian pre-alpine region. Arch. Meteor. Geophys. Bioklimatol. Ser., 25A, 343355, https://doi.org/10.1007/BF02317994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. K., and S. H. Davis, 1983a: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech., 132, 119144, https://doi.org/10.1017/S0022112083001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. K., and S. H. Davis, 1983b: Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech., 132, 145162, https://doi.org/10.1017/S0022112083001524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. N., E. Fedorovich, and A. Shapiro, 2017: Comparison of analytical descriptions of nocturnal low-level jets within the Ekman model framework. Environ. Fluid Mech., 17, 485495, https://doi.org/10.1007/s10652-016-9502-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The Great Plains low-level jet during PECAN: Observed and simulated characteristics. Mon. Wea. Rev., 147, 18451869, https://doi.org/10.1175/MWR-D-18-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, P., E. Cowling, G. Hidy, and C. Furiness, 2000: Comparison of scientific findings from major ozone field studies in North America and Europe. Atmos. Environ., 34, 18851920, https://doi.org/10.1016/S1352-2310(99)00453-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, https://doi.org/10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Sullivan, J. T., S. D. Rabenhorst, J. Dreessen, T. J. McGee, R. Delgado, L. Twigg, and G. Sumnicht, 2017: Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmos. Environ., 158, 160171, https://doi.org/10.1016/j.atmosenv.2017.03.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and Y. Ogura, 1979: Boundary layer forcing as a possible trigger to squall line formation. J. Atmos. Sci., 36, 235254, https://doi.org/10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and C.-C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci., 49, 16061619, https://doi.org/10.1175/1520-0469(1992)049<1606:FADVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, M. C., R. Washington, S. Raghavan, G. Lizcano, and P. Knippertz, 2008: Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J. Climate, 21, 9951012, https://doi.org/10.1175/2007JCLI1766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tombrou, M., A. Dandou, C. Helmis, E. Akylas, G. Angelopoulos, H. Flocas, V. Assimakopoulos, and N. Soulakellis, 2007: Model evaluation of the atmospheric boundary layer and mixed layer evolution. Bound.-Layer Meteor., 124, 6179, https://doi.org/10.1007/s10546-006-9146-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, https://doi.org/10.1175/JAS-D-14-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., S. Mitsumoto, and S. Komori, 1981: Buoyancy effects on the turbulent transport processes in the lower atmosphere. Quart. J. Roy. Meteor. Soc., 107, 561578, https://doi.org/10.1002/qj.49710745307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, https://doi.org/10.1175/2010JAS3289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, https://doi.org/10.1007/BF00122486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandenbussche, S., S. Callewaert, K. Schepanski, and M. De Mazière, 2020: North African mineral dust sources: New insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters. Atmos. Chem. Phys., 20, 15 12715 146, https://doi.org/10.5194/acp-20-15127-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, C. E., P. M. Stepanian, and K. G. Horton, 2016: The role of the U.S. Great Plains low-level jet in nocturnal migrant behavior. Int. J. Biometeor., 60, 15311542, https://doi.org/10.1007/s00484-016-1144-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, C. E., D. R. Reynolds, and A. M. Reynolds, 2020: Linking small-scale flight manoeuvers and density profiles to the vertical movement of insects in the nocturnal stable boundary layer. Sci. Rep., 10, 1019, https://doi.org/10.1038/s41598-020-57779-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., J. A. Winkler, S. Husseini, R. Keeling, J. Nikolic, and S. Zhong, 2014: Low-level jets in the North American Regional Reanalysis (NARR): A comparison with rawinsonde observations. J. Appl. Meteor. Climatol., 53, 20932113, https://doi.org/10.1175/JAMC-D-13-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., and M. C. Todd, 2005: Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett., 32, L17701, https://doi.org/10.1029/2005GL023597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., M. C. Todd, S. Engelstaedter, S. M’Bainayel, and F. Mitchell, 2006: Dust and the low level circulation over the Bodélé depression, Chad: Observations from BoDEx 2005. J. Geophys. Res., 111, D03201, https://doi.org/10.1029/2005JD006502.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus Jr., R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, J. K., 2008: Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol., 48, 99106, https://doi.org/10.1093/icb/icn040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, J. K., and S. A. Isard, 1999: Atmospheric scales of biotic dispersal. Agric. For. Meteor., 97, 263274, https://doi.org/10.1016/S0168-1923(99)00071-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary layer interpretation of the low-level jet. Tellus, 13, 368378, https://doi.org/10.3402/tellusa.v13i3.9513.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and Coauthors, 2019: The Second Wind Forecast Improvement Project (WFIP2): Observational field campaign. Bull. Amer. Meteor. Soc., 100, 17011723, https://doi.org/10.1175/BAMS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, W. W., J. K. Westbrook, J. Raulston, S. D. Pair, and S. E. Hobbs, 1990: Recent airborne radar observations of migrant pests in the United States. Philos. Trans. Roy. Soc. London, 328B, 619630, https://doi.org/10.1098/rstb.1990.0132.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and S. Raman, 1998: The summertime Great Plains low-level jet and the effect of its origin on moisture transport. Bound.-Layer Meteor., 88, 445466, https://doi.org/10.1023/A:1001518302649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., X. Luo, K. Zhu, Z. Sun, and J. Fei, 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. Atmos., 123, 50905115, https://doi.org/10.1029/2018JD028368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T., and G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 23092329, https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, W., G. Chen, Y. Du, and Z. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 39814004, https://doi.org/10.1175/MWR-D-19-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, M., E. B. Radcliffe, D. W. Ragsdale, I. V. MacRae, and M. W. Seeley, 2006: Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agric. For. Meteor., 138, 192202, https://doi.org/10.1016/j.agrformet.2006.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 339 335 38
Full Text Views 73 71 3
PDF Downloads 75 73 6

Emergence of a Nocturnal Low-Level Jet from a Broad Baroclinic Zone

View More View Less
  • 1 aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 bCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 3 cEarth Observing Laboratory, National Center for Environmental Research, Boulder, Colorado
Restricted access

Abstract

An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory); (ii) the nighttime surface buoyancy gradient has little impact on jet strength; and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north–south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu

Abstract

An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory); (ii) the nighttime surface buoyancy gradient has little impact on jet strength; and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north–south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu
Save