• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., B. E. Mapes, and R. A. Houze Jr., 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H. R., K. Fraedrich, and J. T. Wang, 1994: Cloud cluster, Kelvin wave-CISK, and the Madden–Julian oscillations in the equatorial troposphere. J. Atmos. Sci., 51, 6876, https://doi.org/10.1175/1520-0469(1994)051<0068:CCKWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization (CLIRAD-SW) developed at Goddard Climate and Radiation Branch for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130, 933944, https://doi.org/10.1256/qj.02.218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin, M., S. Sherwood, O. Geoffroy, S. Bony, and D. Fuchs, 2019: Identifying the sources of convective memory in cloud-resolving simulations. J. Atmos. Sci., 76, 947962, https://doi.org/10.1175/JAS-D-18-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., R. S. Plant, S. J. Woolnough, A. J. Stirling, and N. J. Harvey, 2020: Memory properties in cloud-resolving simulations of the diurnal cycle of deep convection. J. Adv. Model. Earth Syst., 12, e2019MS001897, https://doi.org/10.1029/2019MS001897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1979: Phase-lagged wave-CISK. Quart. J. Roy. Meteor. Soc., 105, 325353, https://doi.org/10.1002/qj.49710544402.

  • Davies, L., R. S. Plant, and S. H. Derbyshire, 2013: Departures from convective equilibrium with a rapidly varying surface forcing. Quart. J. Roy. Meteor. Soc., 139, 17311746, https://doi.org/10.1002/qj.2065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 17631776, https://doi.org/10.1175/1520-0469(1993)050<1763:TEOCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Z., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., and L. R. Leung, 2011: Moist thermodynamics of Madden–Julian oscillation in a cloud resolving regional model. J. Climate, 24, 55715583, https://doi.org/10.1175/2011JCLI4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., Z. Feng, S. McFarlane, and L. R. Leung, 2013: Environment and the lifetime of tropical deep convection in a cloud-permitting regional model simulation. J. Atmos. Sci., 70, 24092425, https://doi.org/10.1175/JAS-D-12-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., Z. Feng, K. Landu, and C. N. Long, 2014a: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden–Julian oscillation. J. Adv. Model. Earth Syst., 6, 938949, https://doi.org/10.1002/2014MS000335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., Z. Feng, C. Burleyson, K.-S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014b: Evaluation of high resolution simulations of cloud populations in Madden–Julian oscillation using data collected during AMIE/DYNAMO field campaign. J. Geophys. Res., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, https://doi.org/10.1175/JAS-D-12-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, T. M., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2018: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dyn., 50, 42114230, https://doi.org/10.1007/s00382-017-3869-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, https://doi.org/10.1002/jgrd.50640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., C. Zhao, P. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 21212135, https://doi.org/10.1175/JCLI-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017: Roles of the moisture and wave feedbacks in shaping the Madden–Julian oscillation. J. Climate, 30, 10 27510 291, https://doi.org/10.1175/JCLI-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Tan, and Z. Wu, 2019: Noninstantaneous wave-CISK for the interaction between convective heating and low-level moisture convergence in the tropics. J. Atmos. Sci., 76, 20832101, https://doi.org/10.1175/JAS-D-19-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Tan, and Z. Wu, 2022: Enhanced feedback between shallow convection and low-level moisture convergence leads to improved simulation of MJO eastward propagation. J. Climate, 35, 591615, https://doi.org/10.1175/JCLI-D-20-0894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432466, https://doi.org/10.1175/JAS-D-12-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015a: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res., 120, 47834805, https://doi.org/10.1002/2014JD022961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015b: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, https://doi.org/10.1002/2014JD022934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., Z. Wu, C. Fu, and D. Wang, 2011: On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state. J. Climate, 24, 64866500, https://doi.org/10.1175/JCLI-D-10-05012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, https://doi.org/10.1175/JAS-D-14-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, https://doi.org/10.1126/science.1237554.

  • Stirling, A. J., and J. C. Petch, 2004: The impacts of spatial variability on the development of convection. Quart. J. Roy. Meteor. Soc., 130, 31893206, https://doi.org/10.1256/qj.03.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Z. Wu, 2020: Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition. Climate Dyn., 54, 13831405, https://doi.org/10.1007/s00382-019-05066-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, https://doi.org/10.1175/2010JAS3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2012: Theories. Intraseasonal Variability in the Atmosphere-Ocean Climate System, K. M. Lau and D. E. Waliser Eds., Springer Praxis, Springer, 335398.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, https://doi.org/10.1073/pnas.0701020104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and D. A. Randall, 1998: Influence of large-scale advective cooling and moistening effects on the quasi-equilibrium behavior of explicitly simulated cumulus ensembles. J. Atmos. Sci., 55, 896909, https://doi.org/10.1175/1520-0469(1998)055<0896:IOLSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., R. H. Johnson, P. E. Ciesielski, and H. Kuo, 2018: Observation of quasi-2-day convective disturbances in the equatorial Indian Ocean during DYNAMO. J. Atmos. Sci., 75, 28672888, https://doi.org/10.1175/JAS-D-17-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, https://doi.org/10.1175/JAS-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 284 280 69
Full Text Views 98 97 19
PDF Downloads 101 100 28

Convective Response in a Cloud-Permitting Simulation of the MJO: Time Scales and Processes

View More View Less
  • 1 aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 2 bKey Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, China
  • | 3 cDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
  • | 4 dCenter for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida
Restricted access

Abstract

Convective response under multiscale forcing is investigated in this study using a month-long cloud-permitting simulation of the MJO. Convective response time scale (τ) is defined as the time lag between moisture convergence and convective heating. Results imply that τ is dependent on spatial and temporal scales of convective systems. Particularly, estimated τ for slowly varying signals (periods above 2.0 days) on the microscale and synoptic scale is about 0 and 0.5 days, corresponding to instantaneous and noninstantaneous responses, respectively. There are two main phases related to the processes of convective response: shallow convection development and shallow-to-deep convection transition. They are controlled by synoptic-scale boundary layer moisture convergence (M) and lower-tropospheric specific humidity (qm). In the first phase, as qm is small and lags the development of shallow convection, shallow convection occurrence is solely dominated by M (given suitable thermodynamic conditions in the boundary layer). In the second phase, shallow convection further preconditions the atmosphere for shallow-to-deep convection transition by sustaining M and qm through noninstantaneous convection–convergence feedback, i.e., shallow convection drives large-scale circulation that enhances moisture convergence and upward moisture transport. Additionally, eddy moisture upward transport by shallow convection itself (instantaneous convection–convergence feedback) also contributes to an increase of qm. The comparison of the initiation and propagation stages of MJO indicates that τ is shorter in the propagation stage since M and qm are larger therein.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn.

Abstract

Convective response under multiscale forcing is investigated in this study using a month-long cloud-permitting simulation of the MJO. Convective response time scale (τ) is defined as the time lag between moisture convergence and convective heating. Results imply that τ is dependent on spatial and temporal scales of convective systems. Particularly, estimated τ for slowly varying signals (periods above 2.0 days) on the microscale and synoptic scale is about 0 and 0.5 days, corresponding to instantaneous and noninstantaneous responses, respectively. There are two main phases related to the processes of convective response: shallow convection development and shallow-to-deep convection transition. They are controlled by synoptic-scale boundary layer moisture convergence (M) and lower-tropospheric specific humidity (qm). In the first phase, as qm is small and lags the development of shallow convection, shallow convection occurrence is solely dominated by M (given suitable thermodynamic conditions in the boundary layer). In the second phase, shallow convection further preconditions the atmosphere for shallow-to-deep convection transition by sustaining M and qm through noninstantaneous convection–convergence feedback, i.e., shallow convection drives large-scale circulation that enhances moisture convergence and upward moisture transport. Additionally, eddy moisture upward transport by shallow convection itself (instantaneous convection–convergence feedback) also contributes to an increase of qm. The comparison of the initiation and propagation stages of MJO indicates that τ is shorter in the propagation stage since M and qm are larger therein.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn.
Save