• Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, https://doi.org/10.1175/JCLI-D-12-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., A. Fedorov, and L. Muir, 2016: Convective self-aggregation and tropical cyclogenesis under the hypohydrostatic rescaling. J. Atmos. Sci., 73, 525544, https://doi.org/10.1175/JAS-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. F. Khairoutdinov, 2015: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J. Adv. Model. Earth Syst., 7, 17651787, https://doi.org/10.1002/2015MS000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carstens, J. D., and A. A. Wing, 2020: Tropical cyclogenesis from self-aggregated convection in numerical simulations of rotating radiative-convective equilibrium. J. Adv. Model. Earth Syst., 12, e2019MS002020, https://doi.org/10.1029/2019MS002020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, https://doi.org/10.1175/JCLI3760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppin, D., and S. Bony, 2015: Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J. Adv. Model. Earth Syst., 7, 20602078, https://doi.org/10.1002/2015MS000571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and D. J. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and S. J. Woolnough, 2016: The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst., 8, 166195, https://doi.org/10.1002/2015MS000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2016: Gregarious convection and radiative feedbacks in idealized worlds. J. Adv. Model. Earth Syst., 8, 10291033, https://doi.org/10.1002/2016MS000651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, https://doi.org/10.1175/JAS-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and S. Bony, 2015: What favors convective aggregation and why? Geophys. Res. Lett., 42, 56265634, https://doi.org/10.1002/2015GL064260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and D. M. Romps, 2018: Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proc. Natl. Acad. Sci. USA, 115, 29302935, https://doi.org/10.1073/pnas.1719967115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and Coauthors, 2022: Spontaneous aggregation of convective storms. Annu. Rev. Fluid Mech., 54, 133157, https://doi.org/10.1146/annurev-fluid-022421-011319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., B. Stevens, C. Hohenegger, and J. P. Mellado, 2017: A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J. Atmos. Sci., 74, 31293144, https://doi.org/10.1175/JAS-D-17-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., P. Willetts, C. Birch, A. G. Turner, J. H. Marsham, C. M. Taylor, S. Kolusu, and G. M. Martin, 2016: The interaction of moist convection and mid-level dry air in the advance of the onset of the Indian monsoon. Quart. J. Roy. Meteor. Soc., 142, 22562272, https://doi.org/10.1002/qj.2815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., J. L. Redelsperger, and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548, https://doi.org/10.1002/qj.49712656307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and D. Yang, 2016: Response of the superparameterized Madden–Julian oscillation to extreme climate and basic-state variation challenges a moisture mode view. J. Climate, 29, 49955008, https://doi.org/10.1175/JCLI-D-15-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, S. D., and D. Yang, 2020: The lightness of water vapor helps to stabilize tropical climate. Sci. Adv., 6, eaba1951, https://doi.org/10.1126/sciadv.aba1951.

    • Crossref
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, https://doi.org/10.1002/qj.2628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci., 73, 26332642, https://doi.org/10.1175/JAS-D-15-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden‐Julian oscillation in SP‐CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018a: Boundary layer height and buoyancy determine the horizontal scale of convective self-aggregation. J. Atmos. Sci., 75, 469478, https://doi.org/10.1175/JAS-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018b: Boundary layer diabatic processes, the virtual effect, and convective self-aggregation. J. Adv. Model. Earth Syst., 10, 21632176, https://doi.org/10.1029/2017MS001261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2019: Convective heating leads to self-aggregation by generating available potential energy. Geophys. Res. Lett., 46, 10 68710 696, https://doi.org/10.1029/2019GL083805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2021: A shallow-water model for convective self-aggregation. J. Atmos. Sci., 78, 571582, https://doi.org/10.1175/JAS-D-20-0031.1.

  • Yang, D., and S. D. Seidel, 2020: The incredible lightness of water vapor. J. Climate, 33, 28412851, https://doi.org/10.1175/JCLI-D-19-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 277 263 30
Full Text Views 123 111 11
PDF Downloads 149 143 12

A Vertically Resolved MSE Framework Highlights the Role of the Boundary Layer in Convective Self-Aggregation

Lin YaoaUniversity of California, Davis, Davis, California

Search for other papers by Lin Yao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7180-6827
,
Da YangaUniversity of California, Davis, Davis, California
bLawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Da Yang in
Current site
Google Scholar
PubMed
Close
, and
Zhe-Min TancNanjing University, Nanjing, China

Search for other papers by Zhe-Min Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convective self-aggregation refers to a phenomenon in which random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Previous literature studies convective aggregation primarily by analyzing vertically integrated (VI) moist static energy (MSE) variance. That is the global MSE variance, including both the local MSE variance at a given altitude and the covariance of MSE anomalies between different altitudes. Here we present a vertically resolved (VR) MSE framework that focuses on the local MSE variance to study convective self-aggregation. Using a cloud-resolving simulation, we show that the development of self-aggregation is associated with an increase of local MSE variance, and that the diabatic and adiabatic generation of the MSE variance is mainly dominated by the boundary layer (BL; the lowest 2 km). The results agree with recent numerical simulation results and the available potential energy analyses showing that the BL plays a key role in the development of self-aggregation. Additionally, we find that the lower free troposphere (2–4 km) also generates significant MSE variance in the first 15 days. We further present a detailed comparison between the global and local MSE variance frameworks in their mathematical formulation and diagnostic results, highlighting their differences.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu

Abstract

Convective self-aggregation refers to a phenomenon in which random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Previous literature studies convective aggregation primarily by analyzing vertically integrated (VI) moist static energy (MSE) variance. That is the global MSE variance, including both the local MSE variance at a given altitude and the covariance of MSE anomalies between different altitudes. Here we present a vertically resolved (VR) MSE framework that focuses on the local MSE variance to study convective self-aggregation. Using a cloud-resolving simulation, we show that the development of self-aggregation is associated with an increase of local MSE variance, and that the diabatic and adiabatic generation of the MSE variance is mainly dominated by the boundary layer (BL; the lowest 2 km). The results agree with recent numerical simulation results and the available potential energy analyses showing that the BL plays a key role in the development of self-aggregation. Additionally, we find that the lower free troposphere (2–4 km) also generates significant MSE variance in the first 15 days. We further present a detailed comparison between the global and local MSE variance frameworks in their mathematical formulation and diagnostic results, highlighting their differences.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu
Save