The Influence of Shear on Deep Convection Initiation. Part II: Simulations

John M. Peters aDepartment of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by John M. Peters in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison bNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
T. Connor Nelson cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by T. Connor Nelson in
Current site
Google Scholar
PubMed
Close
,
James N. Marquis dPacific Northwest National Laboratory, Richland, Washington

Search for other papers by James N. Marquis in
Current site
Google Scholar
PubMed
Close
,
Jake P. Mulholland aDepartment of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Jake P. Mulholland in
Current site
Google Scholar
PubMed
Close
, and
Christopher J. Nowotarski eDepartment of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Christopher J. Nowotarski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates a hypothesis for the role of vertical wind shear in deep convection initiation (DCI) that was introduced in Part I by examining behavior of a series of numerical simulations. The hypothesis states, “Initial moist updrafts that exceed a width and shear threshold will ‘root’ within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state.” A theoretical model that embodied key elements of the hypothesis was developed in Part I, and the behavior of this model was explored within a multidimensional environmental parameter space. Remarkably similar behavior is evident in the simulations studied here to that of the theoretical model, both in terms of the temporal evolution of DCI and in the sensitivity of DCI to environmental parameters. Notably, both the simulations and theoretical model experience a bifurcation in outcomes, whereby nascent clouds that are narrower than a given initial radius R0 threshold quickly decay and those above the R0 threshold undergo DCI. An important assumption in the theoretical model, which states that the cloud-relative flow of the background environment VCR determines cloud radius R, is scrutinized in the simulations. It is shown that storm-induced inflow is small relative to VCR beyond a few kilometers from the updraft edge, and VCR therefore plays a predominant role in transporting conditionally unstable air to the updraft. Thus, the critical role of VCR in determining R is validated.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, jmpeters@nps.edu

Abstract

This study evaluates a hypothesis for the role of vertical wind shear in deep convection initiation (DCI) that was introduced in Part I by examining behavior of a series of numerical simulations. The hypothesis states, “Initial moist updrafts that exceed a width and shear threshold will ‘root’ within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state.” A theoretical model that embodied key elements of the hypothesis was developed in Part I, and the behavior of this model was explored within a multidimensional environmental parameter space. Remarkably similar behavior is evident in the simulations studied here to that of the theoretical model, both in terms of the temporal evolution of DCI and in the sensitivity of DCI to environmental parameters. Notably, both the simulations and theoretical model experience a bifurcation in outcomes, whereby nascent clouds that are narrower than a given initial radius R0 threshold quickly decay and those above the R0 threshold undergo DCI. An important assumption in the theoretical model, which states that the cloud-relative flow of the background environment VCR determines cloud radius R, is scrutinized in the simulations. It is shown that storm-induced inflow is small relative to VCR beyond a few kilometers from the updraft edge, and VCR therefore plays a predominant role in transporting conditionally unstable air to the updraft. Thus, the critical role of VCR in determining R is validated.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, jmpeters@nps.edu
Save
  • Brown, M., and C. J. Nowotarski, 2019: The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms. J. Atmos. Sci., 76, 13491372, https://doi.org/10.1175/JAS-D-18-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and D. T. Dawson, 2021: An idealized physical model for the severe convective storm environmental sounding. J. Atmos. Sci., 78, 653–670, https://doi.org/10.1175/JAS-D-20-0120.1.

    • Crossref
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

    • Crossref
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations. J. Atmos. Sci., 73, 14551480, https://doi.org/10.1175/JAS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, K. K. Chandakar, and S. C. Sherwood, 2021: Influences of environmental relative humidity and horizontal scale of subcloud ascent on deep convective initiation. J. Atmos. Sci., 79, 337–359, https://doi.org/10.1175/JAS-D-21-0056.1.

    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. N. Marquis, J. M. Peters, and K. Friedrich, 2021: Cloud-scale simulations of convection initiation using observed near-cloud environments from RELAMPAGO-CACTI. 2020 Fall Meeting, Online, Amer. Geophys. Union, Abstract A085-0007, https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/683839.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., J. M. Peters, and J. P. Mulholland, 2020: Evaluating the effective inflow layer of simulated supercell updrafts. J. Atmos. Sci., 148, 35073532, https://doi.org/10.1175/MWR-D-20-0013.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and D. R. Chavas, 2021: Evaluating the conservation of energy variables in simulations of deep moist convection. J. Atmos. Sci., 78, 32293246, https://doi.org/10.1175/JAS-D-20-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. M. Hannah, and H. Morrison, 2019a: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019b: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020a: A formula for the maximum vertical velocity in supercell updrafts. J. Atmos. Sci., 77, 37473757, https://doi.org/10.1175/JAS-D-20-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and J. P. Mulholland, 2020b: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., D. R. Chavas, and J. P. Mulholland, 2021: Generalized lapse rate formulas for use in entraining CAPE calculations. J. Atmos. Sci., 79, 815836, https://doi.org/10.1175/JAS-D-21-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022: The influence of shear on deep convection initiation: Part I: Theory. J. Atmos. Sci., 79, 16691690, https://doi.org/10.1175/JAS-D-21-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proc. Nat. Acad. Sci. USA, 115, 4577–4582, https://doi.org/10.1073/pnas.1719842115.

    • Crossref
    • Export Citation
  • Shima, S.-I., and W. W. Grabowski, 2020: Isolated cumulus congestus based on SCMS campaign: Comparison between Eulerian bin and Lagrangian particle-based microphysics. Int. Cloud Modeling Workshop 2020, Online, ICCP, https://iccp2020.tropmet.res.in/assets/ICMW2020_cumulus_congestus.pdf.

  • Trapp, R., and J. M. Woznicki, 2017: Convective induced stabilizations and subsequent recovery with supercell thunderstorms during the Mesoscale Predictability Experiment (MPEX). Mon. Wea. Rev., 145, 17391754, https://doi.org/10.1175/MWR-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. , and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 2127–2149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 661 234 0
Full Text Views 498 282 59
PDF Downloads 552 291 59