The Influence of Shear on Deep Convection Initiation. Part I: Theory

John M. Peters aDepartment of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by John M. Peters in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison bNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
T. Connor Nelson cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by T. Connor Nelson in
Current site
Google Scholar
PubMed
Close
,
James N. Marquis dPacific Northwest National Laboratory, Richland, Washington

Search for other papers by James N. Marquis in
Current site
Google Scholar
PubMed
Close
,
Jake P. Mulholland aDepartment of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Jake P. Mulholland in
Current site
Google Scholar
PubMed
Close
, and
Christopher J. Nowotarski eDepartment of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Christopher J. Nowotarski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article introduces a novel hypothesis for the role of vertical wind shear (“shear”) in deep convection initiation (DCI). In this hypothesis, initial moist updrafts that exceed a width and shear threshold will “root” within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state. In contrast, initial updrafts that do not exceed the aforementioned thresholds experience suppressed growth by shear-induced downward pressure gradient accelerations, will not root in a deep-enough steering current to increase their inflow, will narrow with time, and will succumb to entrainment-driven dilution. In the latter case, an externally driven lifting mechanism is required to sustain deep convection, and deep convection will not persist in the absence of such lifting mechanism. A theoretical model is developed from the equations of motion to further explore this hypothesis. The model indicates that shear generally suppresses DCI, raising the initial subcloud updraft width that is necessary for it to occur. However, there is a pronounced bifurcation in updraft growth in the model after the onset of convection. Sufficiently wide initial updrafts grow and eventually achieve a steady state. In contrast, insufficiently wide initial updrafts shrink with time and eventually decay completely without external support. A sharp initial updraft radius threshold discriminates between these two outcomes. Thus, consistent with our hypothesis and observations, shear inhibits DCI in some situations, but facilitates it in others.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, jmpeters@nps.edu

Abstract

This article introduces a novel hypothesis for the role of vertical wind shear (“shear”) in deep convection initiation (DCI). In this hypothesis, initial moist updrafts that exceed a width and shear threshold will “root” within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state. In contrast, initial updrafts that do not exceed the aforementioned thresholds experience suppressed growth by shear-induced downward pressure gradient accelerations, will not root in a deep-enough steering current to increase their inflow, will narrow with time, and will succumb to entrainment-driven dilution. In the latter case, an externally driven lifting mechanism is required to sustain deep convection, and deep convection will not persist in the absence of such lifting mechanism. A theoretical model is developed from the equations of motion to further explore this hypothesis. The model indicates that shear generally suppresses DCI, raising the initial subcloud updraft width that is necessary for it to occur. However, there is a pronounced bifurcation in updraft growth in the model after the onset of convection. Sufficiently wide initial updrafts grow and eventually achieve a steady state. In contrast, insufficiently wide initial updrafts shrink with time and eventually decay completely without external support. A sharp initial updraft radius threshold discriminates between these two outcomes. Thus, consistent with our hypothesis and observations, shear inhibits DCI in some situations, but facilitates it in others.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, jmpeters@nps.edu
Save
  • Betchold, P., J. P. Chaboureau, and A. Beljaars, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2004: A reevaluation of ice–liquid water potential temperature. Mon. Wea. Rev., 132, 24212431, https://doi.org/10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christopoulos, C., and T. Schneider, 2021: Assessing biases and climate implications of the diurnal precipitation cycle in climate models. Geophys. Res. Lett., 48, e2021GL093017, https://doi.org/10.1029/2021GL093017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109, D17105, https://doi.org/10.1029/2004JD004818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., P. J. Gleckler, C. Doutriaux, D. N. Williams, A. Dai, J. Fasullo, K. Trenberth, and A. Berg, 2016: Diurnal cycle of tropical precipitation in a general circulation model. J. Climate, 29, 44614471, https://doi.org/10.1175/JCLI-D-15-0664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., F. Giorgi, and K. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. Geophys. Res. Lett., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The Cumulus, Photogrammetric, In Situ, and Doppler Observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5773, https://doi.org/10.1175/BAMS-89-1-57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 31783205, https://doi.org/10.1175/1520-0469(2003)059<3178:LANPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993: Cloud-environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 67, 38213828, https://doi.org/10.1175/1520-0469(1993)050<3821:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2018: On the role of entrainment in the fate of cumulus thermals. J. Atmos. Sci., 75, 39113924, https://doi.org/10.1175/JAS-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and D. Niyogi, 2007: The sensitivity of convective initiation to the lapse rate of the active cloud bearing layer. Mon. Wea. Rev., 135, 30133032, https://doi.org/10.1175/MWR3449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., 2017: Vertical velocity in the gray zone. J. Adv. Model. Earth Syst., 9, 23042316, https://doi.org/10.1002/2017MS001059.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, https://doi.org/10.1002/qj.1954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. N. Straub, 2019: Linear theory of shallow convection in deep, vertically sheared atmospheres. Quart. J. Roy. Meteor. Soc., 145, 31293147, https://doi.org/10.1002/qj.3609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, https://doi.org/10.1146/annurev.fl.19.010187.002101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, https://doi.org/10.1175/JAS3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., K. Suselj, W. W. Grabowski, and J. Teixeira, 2018: Shallow-to-deep transition of continental moist convection: Cold pools, surface fluxes, and mesoscale organization. J. Atmos. Sci., 75, 40714090, https://doi.org/10.1175/JAS-D-18-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

  • Marquis, J. N., A. C. Varble, P. Robinson, T. C. Nelson, and K. Friedrich, 2021: Low-level mesoscale and cloud-scale interactions promoting deep convection initiation. Mon. Wea. Rev., 149, 24732495, https://doi.org/10.1175/MWR-D-20-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, J., 1974: Field verification of the relationship between entrainment rate and cumulus cloud diameter. J. Atmos. Sci., 31, 10281039, https://doi.org/10.1175/1520-0469(1974)031<1028:FVOTRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains in ascending moist updrafts: Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, and S. C. Sherwood, 2021: Comparing growth rates of simulated moist and dry convective thermals. J. Atmos. Sci., 78, 797816, https://doi.org/10.1175/JAS-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, K. K. Chandakar, and S. C. Sherwood, 2022: Influences of environmental relative humidity and horizontal scale of subcloud ascent on deep convective initiation. J. Atmos. Sci., 79, 337359, https://doi.org/10.1175/JAS-D-21-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 74, 375392, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling perspective. J. Atmos. Sci., 77, 39293949, https://doi.org/10.1175/JAS-D-19-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does vertical wind shear influence entrainment in squall lines? J. Atmos. Sci., 74, 19311946, https://doi.org/10.1175/JAS-D-20-0299.1.

    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, A. Varble, and K. Friedrich, 2021: Radiosonde observations of environments supporting deep moist convection initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289309, https://doi.org/10.1175/MWR-D-20-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, J. M. Peters, and K. Friedrich, 2022: Environmental controls on simulated deep moist convection initiation occurring during RELAMPAGO-CACTI. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-21-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., J. M. Peters, and J. P. Mulholland, 2020: Evaluating the effective inflow layer of simulated supercell updrafts. J. Atmos. Sci., 148, 35073532, https://doi.org/10.1175/MWR-D-20-0013.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and D. R. Chavas, 2021: Evaluating the conservation of energy variables in simulations of deep moist convection. J. Atmos. Sci., 78, 32293246, https://doi.org/10.1175/JAS-D-20-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. M. Hannah, and H. Morrison, 2019a: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019b: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020a: Thermal chains in ascending moist updrafts: Part II: Simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020b: A formula for the maximum vertical velocity in supercell updrafts. J. Atmos. Sci., 77, 37473757, https://doi.org/10.1175/JAS-D-20-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and G. L. Mullendore, 2020c: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and J. P. Mulholland, 2020d: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., D. R. Chavas, and J. P. Mulholland, 2022a: Generalized lapse rate formulas for use in entraining CAPE calculations. J. Atmos. Sci., 79, 815836, https://doi.org/10.1175/JAS-D-21-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022b: The influence of shear on deep convection initiation. Part II: Simulations. J. Atmos. Sci., 79, 16911711, https://doi.org/10.1175/JAS-D-21-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2016: Reply to “Comments on ‘MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel.’” J. Atmos. Sci., 73, 25772583, https://doi.org/10.1175/JAS-D-15-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010a: Do undiluted convective plumes exist in the upper troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010b: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, https://doi.org/10.1175/2009JAS3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau, R. R., D. J. Kirshbaum, and M. K. Yau, 2017: Initiation of deep convection over an idealized mesoscale convergence line. J. Atmos. Sci., 74, 835853, https://doi.org/10.1175/JAS-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savre, J., and M. Herzog, 2019: A general description of entrainment in buoyant cloudy plumes including the effects of mixing-induced evaporation. J. Atmos. Sci., 76, 479496, https://doi.org/10.1175/JAS-D-17-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proc. Natl. Acad. Sci. USA, 115, 45774582, https://doi.org/10.1073/pnas.1719842115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1957: Experiments on convection of isolated masses in buoyant fluid. J. Fluid Mech., 2, 583594, https://doi.org/10.1017/S0022112057000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, and M. Colin, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm Environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1962: The starting plume in neutral surroundings. J. Fluid Mech., 13, 356368, https://doi.org/10.1017/S0022112062000762.

  • Turner, J. S., 1964: The dynamics of spherical masses of buoyant fluid. J. Fluid Mech., 31, 481490, https://doi.org/10.1017/S0022112064000854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., and G. I. Taylor, 1957: Buoyant vortex rings. Proc. Roy. Soc. London, A239, 6175, https://doi.org/10.1098/rspa.1957.0022.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, https://doi.org/10.1175/2010JAS3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. M. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2003: Episodic mixing and buoyancy-sorting representations of shallow convection: A diagnostic study. J. Atmos. Sci., 60, 892912, https://doi.org/10.1175/1520-0469(2003)060<0892:EMABSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1203 625 0
Full Text Views 787 467 67
PDF Downloads 841 475 68