Abstract
Bulk ice-microphysical models parameterize the dynamic evolution of ice particles from advection, collection, and sedimentation through a cloud layer to the surface. Frozen hydrometeors can grow to acquire a multitude of shapes and sizes, which influence the distribution of mass within cloud systems. Aggregates, defined herein as the collection of ice particles, have a variety of formations based on initial ice particle size, shape, falling orientation, and the number of particles that collect. This work focuses on using the Ice Particle and Aggregate Simulator (IPAS) as a statistical tool to repetitively collect ice crystals of identical properties to derive bulk aggregate characteristics. A database of 9 744 000 aggregates is generated with resulting properties analyzed. After 150 single ice crystals (monomers) collect, the most extreme aggregate aspect ratio calculations asymptote toward
© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Schmitt’s current affiliation: University of Alaska Fairbanks, Fairbanks, Alaska.