The Ice Particle and Aggregate Simulator (IPAS). Part II: Analysis of a Database of Theoretical Aggregates for Microphysical Parameterization

Vanessa M. Przybylo aUniversity at Albany, State University of New York, Albany, New York

Search for other papers by Vanessa M. Przybylo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4380-3543
,
Kara J. Sulia aUniversity at Albany, State University of New York, Albany, New York

Search for other papers by Kara J. Sulia in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Lebo bUniversity of Wyoming, Laramie, Wyoming

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
, and
Carl G. Schmitt cNCAR, Boulder, Colorado

Search for other papers by Carl G. Schmitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bulk ice-microphysical models parameterize the dynamic evolution of ice particles from advection, collection, and sedimentation through a cloud layer to the surface. Frozen hydrometeors can grow to acquire a multitude of shapes and sizes, which influence the distribution of mass within cloud systems. Aggregates, defined herein as the collection of ice particles, have a variety of formations based on initial ice particle size, shape, falling orientation, and the number of particles that collect. This work focuses on using the Ice Particle and Aggregate Simulator (IPAS) as a statistical tool to repetitively collect ice crystals of identical properties to derive bulk aggregate characteristics. A database of 9 744 000 aggregates is generated with resulting properties analyzed. After 150 single ice crystals (monomers) collect, the most extreme aggregate aspect ratio calculations asymptote toward ϕca=(c/a)0.75 and ϕca ≈ 0.50 for aggregates composed of quasi-horizontally oriented and randomly oriented monomers, respectively. The results presented are largely consistent with both a previous theoretical study and estimates derived from ground-based observations from two different geographic locations. Particle falling orientation highly influences newly formed aggregate aspect ratios from the collection of particles with extreme aspect ratios; quasi-horizontally oriented particles can produce aggregate aspect ratios an order of magnitude more extreme than randomly oriented particles but can also produce near-spherical aggregates as the number of monomers comprising the aggregate reach approximately 100. Finally, a majority of collections result in aggregates that are closer to prolate than oblate spheroids.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu

Abstract

Bulk ice-microphysical models parameterize the dynamic evolution of ice particles from advection, collection, and sedimentation through a cloud layer to the surface. Frozen hydrometeors can grow to acquire a multitude of shapes and sizes, which influence the distribution of mass within cloud systems. Aggregates, defined herein as the collection of ice particles, have a variety of formations based on initial ice particle size, shape, falling orientation, and the number of particles that collect. This work focuses on using the Ice Particle and Aggregate Simulator (IPAS) as a statistical tool to repetitively collect ice crystals of identical properties to derive bulk aggregate characteristics. A database of 9 744 000 aggregates is generated with resulting properties analyzed. After 150 single ice crystals (monomers) collect, the most extreme aggregate aspect ratio calculations asymptote toward ϕca=(c/a)0.75 and ϕca ≈ 0.50 for aggregates composed of quasi-horizontally oriented and randomly oriented monomers, respectively. The results presented are largely consistent with both a previous theoretical study and estimates derived from ground-based observations from two different geographic locations. Particle falling orientation highly influences newly formed aggregate aspect ratios from the collection of particles with extreme aspect ratios; quasi-horizontally oriented particles can produce aggregate aspect ratios an order of magnitude more extreme than randomly oriented particles but can also produce near-spherical aggregates as the number of monomers comprising the aggregate reach approximately 100. Finally, a majority of collections result in aggregates that are closer to prolate than oblate spheroids.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu
Save
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brdar, S., and A. Seifert, 2018: McSnow: A Monte-Carlo particle model for riming and aggregation of ice particles in a multidimensional microphysical phase space. J. Adv. Model. Earth Syst., 10, 187206, https://doi.org/10.1002/2017MS001167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R. J., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, https://doi.org/10.1002/qj.2058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 43444366, https://doi.org/10.1175/1520-0469(1995)052<4344:POICCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2011a: The Spectral Ice Habit Prediction System (SHIPS). Part III: Description of the ice particle model and the habit-dependent aggregation model. J. Atmos. Sci., 68, 11251141, https://doi.org/10.1175/2011JAS3666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2011b: The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box model simulations of the habit-dependent aggregation process. J. Atmos. Sci., 68, 11421161, https://doi.org/10.1175/2011JAS3667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Impacts of ice particle shape and density evolution on the distribution of orographic precipitation. J. Atmos. Sci., 75, 30953114, https://doi.org/10.1175/JAS-D-17-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, and E. E. Clothiaux, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., J. Verlinde, E. E. Clothiaux, K. Aydin, and C. Schmitt, 2019: Shapes and fall orientations of ice particle aggregates. J. Atmos. Sci., 76, 19031916, https://doi.org/10.1175/JAS-D-18-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1985: Structure and falling motion of early snowflakes. Ann. Glaciol., 6, 269271, https://doi.org/10.3189/1985AoG6-1-269-271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karrer, M., A. Seifert, C. Siewert, D. Ori, A. von Lerber, and S. Kneifel, 2020: Ice particle properties inferred from aggregation modelling. J. Adv. Model. Earth Syst., 12, e2020MS002066, https://doi.org/10.1029/2020MS002066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, https://doi.org/10.1256/qj.01.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346358, https://doi.org/10.1002/2015EA000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., S. Kneifel, and R. J. Hogan, 2017: Evaluation of the Rayleigh-Gans approximation for microwave scattering by rimed snowflakes. Quart. J. Roy. Meteor. Soc., 144, 7788, https://doi.org/10.1002/qj.3093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particle. J. Geol. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maruyama, K., and Y. Fujiyoshi, 2005: Monte Carlo simulation of the formation of snowflakes. J. Atmos. Sci., 62, 15291544, https://doi.org/10.1175/JAS3416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, https://doi.org/10.1175/JAS3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, https://doi.org/10.1175/JAS-3356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Atmos. Sci., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, S. A. Tessendorf, G. Thompson, and K. Ikeda, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., and K. Sassen, 1983: Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 22, 653664, https://doi.org/10.1175/JAM2223.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., M. Formenton, A. Bansemer, I. Kudzotsa, and B. Lienert, 2015: A parameterization of sticking efficiency for collisions of snow and graupel with ice crystals: Theory and comparison with observations. J. Atmos. Sci., 72, 48854902, https://doi.org/10.1175/JAS-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, Z. J. Lebo, and W. C. May, 2019: The Ice Particle and Aggregate Simulator (IPAS). Part I: Extracting dimensional properties of ice–ice aggregates for microphysical parameterization. J. Atmos. Sci., 76, 16611676, https://doi.org/10.1175/JAS-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, Z. J. Lebo, and W. C. May, 2021: IPAS repository. GitHub, https://github.com/vprzybylo/IPAS.

    • Search Google Scholar
    • Export Citation
  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, and Z. J. Lebo, 2022: The Ice Particle and Aggregate Simulator (IPAS). Part III: Verification and analysis of ice–aggregate and aggregate–aggregate collection for microphysical parameterization. J. Atmos. Sci., 79, 16511667, https://doi.org/10.1175/JAS-D-21-0180.1.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, https://doi.org/10.1002/2013GL058781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., A. J. Heymsfield, P. Connolly, E. Jarvinen, and M. Schnaiter, 2016: A global view of atmospheric ice particle complexity. J. Geol. Res., 43, 11 91311 920, https://doi.org/10.1002/2016GL071267.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., K. Sulia, Z. J. Lebo, A. J. Heymsfield, V. Przybylo, and P. Connolly, 2019: The fall speed variability of similarly sized ice particle aggregates. J. Appl. Meteor. Climatol., 58, 17511761, https://doi.org/10.1175/JAMC-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., J. Leinonen, C. Siewert, and S. Kneifel, 2019: The geometry of rimed aggregate snowflakes: A modeling study. J. Adv. Model. Earth Syst., 11, 712731, https://doi.org/10.1029/2018MS001519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. M. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Atmos. Sci., 44, 445466, https://doi.org/10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, https://doi.org/10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, https://doi.org/10.1175/JAS-D-12-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., Z. J. Lebo, V. Przybylo, and C. G. Schmitt, 2021: A new method for ice–ice aggregation in the adaptive habit model. J. Atmos. Sci., 78, 133154, https://doi.org/10.1175/JAS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. J. Atmos. Sci., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., and E. K. Septhon, 2017: Using 3-D-printed analogues to investigate the fall speeds and orientations of complex ice particles. Geophys. Res. Lett., 44, L15104, https://doi.org/10.1002/2017GL074130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31, L15104, https://doi.org/10.1029/2004GL020363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219, https://doi.org/10.1175/2007JAS2315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., M. Stoelinga, and J. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, https://doi.org/10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 356 129 0
Full Text Views 195 139 21
PDF Downloads 153 77 9