The Ice Particle and Aggregate Simulator (IPAS). Part III: Verification and Analysis of Ice–Aggregate and Aggregate–Aggregate Collection for Microphysical Parameterization

Vanessa M. Przybylo aUniversity at Albany, State University of New York, Albany, New York

Search for other papers by Vanessa M. Przybylo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4380-3543
,
Kara J. Sulia aUniversity at Albany, State University of New York, Albany, New York

Search for other papers by Kara J. Sulia in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Lebo bUniversity of Wyoming, Laramie, Wyoming

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
, and
Carl G. Schmitt cNCAR, Boulder, Colorado

Search for other papers by Carl G. Schmitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Ice Particle and Aggregate Simulator (IPAS) is used to theoretically represent the aggregation process of ice crystals. Aggregates have a variety of formations based on initial ice particle size, shape, and falling orientation, all of which influence water phase partitioning. Aggregate dimensional properties and density changes are calculated for monomer–monomer (MON–MON), monomer–aggregate (MON–AGG), and aggregate–aggregate (AGG–AGG) collection to be used by ice-microphysical models for improvement in aggregation parameterizations. Aggregates are chosen from a database of 9 744 000 preformed combinations to be further collected (see ). AGG–AGG collection results in more extreme and a smaller range of aggregate aspect ratios than MON–AGG collection. A majority of aggregates are closer to prolate than oblate spheroids, regardless of collection type, except for quasi-horizontally oriented particles that have extreme aspect ratios to begin with. MON–AGG collection frequently results in an increase in density upon collection, whereas MON–MON and AGG–AGG collection almost always result in particle density decreases, with extreme reductions near 99% for MON–MON collection. MON–MON collection results in the greatest decreases in density but then quickly becomes unaffected by the addition of more monomers due to inherent size differences between monomers and aggregates. Finally, a holistic analysis to in situ observations of cloud particle images is presented. IPAS 2D aspect ratios surround a median value of 0.6 and closely follow that of previous studies while varying by no more than ≈12% on average from observed aggregates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska, Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu

Abstract

The Ice Particle and Aggregate Simulator (IPAS) is used to theoretically represent the aggregation process of ice crystals. Aggregates have a variety of formations based on initial ice particle size, shape, and falling orientation, all of which influence water phase partitioning. Aggregate dimensional properties and density changes are calculated for monomer–monomer (MON–MON), monomer–aggregate (MON–AGG), and aggregate–aggregate (AGG–AGG) collection to be used by ice-microphysical models for improvement in aggregation parameterizations. Aggregates are chosen from a database of 9 744 000 preformed combinations to be further collected (see ). AGG–AGG collection results in more extreme and a smaller range of aggregate aspect ratios than MON–AGG collection. A majority of aggregates are closer to prolate than oblate spheroids, regardless of collection type, except for quasi-horizontally oriented particles that have extreme aspect ratios to begin with. MON–AGG collection frequently results in an increase in density upon collection, whereas MON–MON and AGG–AGG collection almost always result in particle density decreases, with extreme reductions near 99% for MON–MON collection. MON–MON collection results in the greatest decreases in density but then quickly becomes unaffected by the addition of more monomers due to inherent size differences between monomers and aggregates. Finally, a holistic analysis to in situ observations of cloud particle images is presented. IPAS 2D aspect ratios surround a median value of 0.6 and closely follow that of previous studies while varying by no more than ≈12% on average from observed aggregates.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska, Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu
Save
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 8851895, https://doi.org/10.1175/JAM2308.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., 1995: Improved measurement of the ice water content in cirrus using a total water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., 2021: How snow aggregate ellipsoid shape and orientation variability affects fall speed and self-aggregation rates. J. Atmos. Sci., 78, 5173, https://doi.org/10.1175/JAS-D-20-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., H. Morrison, D. Mitchell, A. Gettelman, and E. Erfani, 2017: Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Climate, 30, 609629, https://doi.org/10.1175/JCLI-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. Mitchell, 2016: Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing. Atmos. Chem. Phys., 16, 43794400, https://doi.org/10.5194/acp-16-4379-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56, 19251941, https://doi.org/10.1175/1520-0469(1999)056<1925:AOOICE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high resolution multi-angle photography of hydrometeors in freefall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shkurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, https://doi.org/10.1175/MWR2810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099, https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. Brown, C. Westbrook, A. Heymsfield, and J. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W. Schmid, R. G. Fovell, and H.-H. Schiesser, 1993: Hailstorms in Switzerland: Left movers, right movers, and false hooks. Mon. Wea. Rev., 121, 33453370, https://doi.org/10.1175/1520-0493(1993)121<3345:HISLMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, and E. E. Clothiaux, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., J. Verlinde, E. E. Clothiaux, K. Aydin, and C. Schmitt, 2019: Shapes and fall orientations of ice particle aggregates. J. Atmos. Sci., 76, 19031915, https://doi.org/10.1175/JAS-D-18-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karrer, M., A. Seifert, C. Siewert, D. Ori, A. von Lerber, and S. Kneifel, 2020: Ice particle properties inferred from aggregation modelling. J. Adv. Model. Earth Syst., 12, e2020MS002066, https://doi.org/10.1029/2020MS002066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2010: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1972: Measurements of the growth of the ice budget in a persisting contrail. J. Atmos. Sci., 29, 13671374, https://doi.org/10.1175/1520-0469(1972)029<1367:MOTGOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, https://doi.org/10.1256/qj.01.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, https://doi.org/10.1002/qj.49712656913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroiwa, D., 1961: A study of ice sintering. Tellus, 13, 252259, https://doi.org/10.3402/tellusa.v13i2.9450.

  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, https://doi.org/10.5194/amt-4-1361-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and P. O’Connor, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. Baker, B. Pilson, and Q. Mo, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203, https://doi.org/10.1175/JAS3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particle. J. Geol. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, A. G. Hallar, I. B. McCubbin, S. Y. Matrosov, and M. D. Shupe, 2013: Enhanced radar backscattering due to oriented ice particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362351, https://doi.org/10.1175/JTECH-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2015: Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. J. Atmos. Oceanic Technol., 32, 865879, https://doi.org/10.1175/JTECH-D-14-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Atmos. Sci., 52, 12771293, https://doi.org/10.1175/JAMC-D-12-0114.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Atmos. Sci., 29, 153163, https://doi.org/10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., A. Korolev, and J. Fan, 2011: Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. J. Geol. Res., 116, D00T06, https://doi.org/10.1029/2011JD015888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E. J., and R. C. Srivastava, 1979: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484493, https://doi.org/10.1175/1520-0469(1979)036<0484:ANAOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 1079 pp.

  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, Z. J. Lebo, and W. C. May, 2019: The Ice Particle and Aggregate Simulator (IPAS). Part I: Extracting dimensional properties of ice–ice aggregates for microphysical parameterization. J. Atmos. Sci., 76, 16611676, https://doi.org/10.1175/JAS-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, and Z. J. Lebo, 2022a: Classification of cloud particle imagery from aircraft platforms using convolutional neural networks. J. Atmos. Oceanic Technol., 39, 405424, https://doi.org/10.1175/JTECH-D-21-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylo, V. M., K. J. Sulia, C. G. Schmitt, and Z. J. Lebo, 2022b: The Ice Particle and Aggregate Simulator (IPAS). Part II: Analysis of a database of theoretical aggregates for microphysical parameterization. J. Atmos. Sci., 79, 16511667, https://doi.org/10.1175/JAS-D-21-0180.1, in press.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, https://doi.org/10.1175/1520-0426-19.3.296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J. R., and R. T. Rasmussen, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, https://doi.org/10.1002/2013GL058781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. M. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Atmos. Sci., 44, 445466, https://doi.org/10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., Z. J. Lebo, V. Przybylo, and C. G. Schmitt, 2021: A new method for ice–ice aggregation in the adaptive habit model. J. Atmos. Sci., 78, 133154, https://doi.org/10.1175/JAS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. J. Atmos. Sci., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31, L15104, https://doi.org/10.1029/2004GL020363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., M. Stoelinga, and J. Locatelli, 2007: The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 39273948, https://doi.org/10.1175/2007JAS2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., U. Löhnert, S. Kneifel, and S. Crewell, 2012: Snow particle orientation observed by ground-based microwave radiometry. J. Geophys. Res., 117, D02206, https://doi.org/10.1029/2011JD016369.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 317 103 0
Full Text Views 171 99 14
PDF Downloads 189 109 8