Collision Fluctuations of Lucky Droplets with Superdroplets

Xiang-Yu Li aDepartment of Meteorology, Stockholm University, Stockholm, Sweden
bBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
cNordita, KTH Royal Institute of Technology–Stockholm University, Stockholm, Sweden
dSwedish e-Science Research Centre, Stockholm, Sweden
eJILA, University of Colorado Boulder, Boulder, Colorado
fLaboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Xiang-Yu Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5722-0018
,
Bernhard Mehlig gDepartment of Physics, Gothenburg University, Gothenburg, Sweden

Search for other papers by Bernhard Mehlig in
Current site
Google Scholar
PubMed
Close
,
Gunilla Svensson aDepartment of Meteorology, Stockholm University, Stockholm, Sweden
bBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
dSwedish e-Science Research Centre, Stockholm, Sweden

Search for other papers by Gunilla Svensson in
Current site
Google Scholar
PubMed
Close
,
Axel Brandenburg cNordita, KTH Royal Institute of Technology–Stockholm University, Stockholm, Sweden
eJILA, University of Colorado Boulder, Boulder, Colorado
fLaboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
hDepartment of Astronomy, Oskar Klein Centre, Stockholm University, Stockholm, Sweden

Search for other papers by Axel Brandenburg in
Current site
Google Scholar
PubMed
Close
, and
Nils E. L. Haugen iSINTEF Energy Research, Trondheim, Norway
jDivision of Energy Science, Luleå University of Technology, Luleå, Sweden

Search for other papers by Nils E. L. Haugen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It was previously shown that the superdroplet algorithm for modeling the collision–coalescence process can faithfully represent mean droplet growth in turbulent clouds. An open question is how accurately the superdroplet algorithm accounts for fluctuations in the collisional aggregation process. Such fluctuations are particularly important in dilute suspensions. Even in the absence of turbulence, Poisson fluctuations of collision times in dilute suspensions may result in substantial variations in the growth process, resulting in a broad distribution of growth times to reach a certain droplet size. We quantify the accuracy of the superdroplet algorithm in describing the fluctuating growth history of a larger droplet that settles under the effect of gravity in a quiescent fluid and collides with a dilute suspension of smaller droplets that were initially randomly distributed in space (“lucky droplet model”). We assess the effect of fluctuations upon the growth history of the lucky droplet and compute the distribution of cumulative collision times. The latter is shown to be sensitive enough to detect the subtle increase of fluctuations associated with collisions between multiple lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct ways: through the random spatial distribution of superdroplets and through the Monte Carlo collision algorithm involved. Using specifically designed numerical experiments, we show that both on their own give an accurate representation of fluctuations. We conclude that the superdroplet algorithm can faithfully represent fluctuations in the coagulation of droplets driven by gravity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang-Yu Li, xiang.yu.li@su.se

Abstract

It was previously shown that the superdroplet algorithm for modeling the collision–coalescence process can faithfully represent mean droplet growth in turbulent clouds. An open question is how accurately the superdroplet algorithm accounts for fluctuations in the collisional aggregation process. Such fluctuations are particularly important in dilute suspensions. Even in the absence of turbulence, Poisson fluctuations of collision times in dilute suspensions may result in substantial variations in the growth process, resulting in a broad distribution of growth times to reach a certain droplet size. We quantify the accuracy of the superdroplet algorithm in describing the fluctuating growth history of a larger droplet that settles under the effect of gravity in a quiescent fluid and collides with a dilute suspension of smaller droplets that were initially randomly distributed in space (“lucky droplet model”). We assess the effect of fluctuations upon the growth history of the lucky droplet and compute the distribution of cumulative collision times. The latter is shown to be sensitive enough to detect the subtle increase of fluctuations associated with collisions between multiple lucky droplets. The superdroplet algorithm incorporates fluctuations in two distinct ways: through the random spatial distribution of superdroplets and through the Monte Carlo collision algorithm involved. Using specifically designed numerical experiments, we show that both on their own give an accurate representation of fluctuations. We conclude that the superdroplet algorithm can faithfully represent fluctuations in the coagulation of droplets driven by gravity.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang-Yu Li, xiang.yu.li@su.se
Save
  • Arabas, A., and S. Shima, 2013: Large-eddy simulations of trade wind cumuli using particle-based microphysics with Monte Carlo coalescence. J. Atmos. Sci., 70, 27682777, https://doi.org/10.1175/JAS-D-12-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baehr, H., and H. Klahr, 2019: The concentration and growth of solids in fragmenting circumstellar disks. Astrophys. J., 881, 162, https://doi.org/10.3847/1538-4357/ab2f85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brdar, S., and A. Seifert, 2018: McSnow: A Monte-Carlo particle model for riming and aggregation of ice particles in a multidimensional microphysical phase space. J. Adv. Model. Earth Syst., 10, 187206, https://doi.org/10.1002/2017MS001167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drążkowska, J., F. Windmark, and C. P. Dullemond, 2014: Modeling dust growth in protoplanetary disks: The breakthrough case. Astron. Astrophys., 567, A38, https://doi.org/10.1051/0004-6361/201423708.

    • Crossref
    • Export Citation
  • Dziekan, P., and H. Pawlowska, 2017: Stochastic coalescence in Lagrangian cloud microphysics. Atmos. Chem. Phys., 17, 13 50913 520, https://doi.org/10.5194/acp-17-13509-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., M. Waruszewski, and H. Pawlowska, 2019: University of Warsaw Lagrangian Cloud Model (UWLCM) 1.0: A modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics. Geosci. Model Dev., 12, 25872606, https://doi.org/10.5194/gmd-12-2587-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1972: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci., 29, 14961510, https://doi.org/10.1175/1520-0469(1972)029<1496:TSCMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2020: Comparison of Eulerian bin and Lagrangian particle-based microphysics in simulations of nonprecipitating cumulus. J. Atmos. Sci., 77, 39513970, https://doi.org/10.1175/JAS-D-20-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., T. Yamaguchi, and G. Feingold, 2019: Inhomogeneous mixing in Lagrangian cloud models: Effects on the production of precipitation embryos. J. Atmos. Sci., 76, 113133, https://doi.org/10.1175/JAS-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaruga, A., and H. Pawlowska, 2018: libcloudph++ 2.0: Aqueous-phase chemistry extension of the particle-based cloud microphysics scheme. Geosci. Model Dev., 11, 36233645, https://doi.org/10.5194/gmd-11-3623-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, A., A. N. Youdin, and Y. Lithwick, 2012: Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astron. Astrophys., 537, A125, https://doi.org/10.1051/0004-6361/201117701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, A., M.-M. Mac Low, P. Lacerda, and M. Bizzarro, 2015: Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv., 1, e1500109, https://doi.org/10.1126/sciadv.1500109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, H., K. Isoya, and Y. Sato, 2019: Importance of giant impact ejecta for orbits of planets formed during the giant impact era. Astrophys. J., 887, 226, https://doi.org/10.3847/1538-4357/ab5307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86, 235244, https://doi.org/10.1175/BAMS-86-2-235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Growth by collection. Physics and Chemistry of Clouds, Cambridge University Press, 380–414, https://doi.org/10.1017/CBO9780511976377.

    • Crossref
    • Export Citation
  • Li, X.-Y., and L. Mattsson, 2020: Dust growth by accretion of molecules in supersonic interstellar turbulence. Astrophys. J., 903, 148, https://doi.org/10.3847/1538-4357/abb9ad.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., and L. Mattsson, 2021: Coagulation of inertial particles in supersonic turbulence. Astron. Astrophys., 648, A52, https://doi.org/10.1051/0004-6361/202040068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., A. Brandenburg, N. E. L. Haugen, and G. Svensson, 2017: Eulerian and Lagrangian approaches to multidimensional condensation and collection. J. Adv. Model. Earth Syst., 9, 11161137, https://doi.org/10.1002/2017MS000930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., A. Brandenburg, G. Svensson, N. E. Haugen, B. Mehlig, and I. Rogachevskii, 2018: Effect of turbulence on collisional growth of cloud droplets. J. Atmos. Sci., 75, 34693487, https://doi.org/10.1175/JAS-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., G. Svensson, A. Brandenburg, and N. E. L. Haugen, 2019: Cloud-droplet growth due to supersaturation fluctuations in stratiform clouds. Atmos. Chem. Phys., 19, 639648, https://doi.org/10.5194/acp-19-639-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., A. Brandenburg, G. Svensson, N. E. L. Haugen, B. Mehlig, and I. Rogachevskii, 2020: Condensational and collisional growth of cloud droplets in a turbulent environment. J. Atmos. Sci., 77, 337353, https://doi.org/10.1175/JAS-D-19-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madival, D. G., 2018: Stochastic growth of cloud droplets by collisions during settling. Theor. Comput. Fluid Dyn., 32, 235244, https://doi.org/10.1007/s00162-017-0451-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., and A. Seifert, 2015: A Lagrangian drop model to study warm rain microphysical processes in shallow cumulus. J. Adv. Model. Earth Syst., 7, 11361154, https://doi.org/10.1002/2015MS000456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., and A. Seifert, 2016: Recirculation and growth of raindrops in simulated shallow cumulus. J. Adv. Model. Earth Syst., 8, 520537, https://doi.org/10.1002/2016MS000631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesvorný, D., R. Li, A. N. Youdin, J. B. Simon, and W. M. Grundy, 2019: Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nat. Astron., 3, 808812, https://doi.org/10.1038/s41550-019-0806-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., K. Matsuda, and K. Takahashi, 2015: Lagrangian tracking simulation of droplet growth in turbulence–turbulence enhancement of autoconversion rate. J. Atmos. Sci., 72, 25912607, https://doi.org/10.1175/JAS-D-14-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ormel, C., D. Paszun, C. Dominik, and A. Tielens, 2009: Dust coagulation and fragmentation in molecular clouds: I. How collisions between dust aggregates alter the dust size distribution. Astron. Astrophys., 502, 845869, https://doi.org/10.1051/0004-6361/200811158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paoli, R., J. Helie, and T. Poinsot, 2004: Contrail formation in aircraft wakes. J. Fluid Mech., 502, 361373, https://doi.org/10.1017/S0022112003007808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pencil Code Collaboration and Coauthors, 2021: The Pencil Code, a modular MPI code for partial differential equations and particles: Multipurpose and multiuser-maintained. J. Open Source Software, 6, 2807, https://doi.org/10.21105/joss.02807.

    • Crossref
    • Export Citation
  • Poon, S. T., R. P. Nelson, S. A. Jacobson, and A. Morbidelli, 2020: Formation of compact systems of super-Earths via dynamical instabilities and giant impacts. Mon. Not. Roy. Astron. Soc., 491, 55955620, https://doi.org/10.1093/mnras/stz3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 945 pp., https://doi.org/10.1080/02786829808965531.

    • Crossref
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ros, K., and A. Johansen, 2013: Ice condensation as a planet formation mechanism. Astron. Astrophys., 552, A137, https://doi.org/10.1051/0004-6361/201220536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ros, K., A. Johansen, I. Riipinen, and D. Schlesinger, 2019: Effect of nucleation on icy pebble growth in protoplanetary discs. Astron. Astrophys., 629, A65, https://doi.org/10.1051/0004-6361/201834331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 1630, https://doi.org/10.1017/S0022112056000020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, I., and T. Gotoh, 2018: Turbulence and cloud droplets in cumulus clouds. New J. Phys., 20, 023001, https://doi.org/10.1088/1367-2630/aaa229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S.-i. Shima, and H. Tomita, 2017: A grid refinement study of trade wind cumuli simulated by a Lagrangian cloud microphysical model: The super-droplet method. Atmos. Sci. Lett., 18, 359365, https://doi.org/10.1002/asl.764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S.-i. Shima, and H. Tomita, 2018: Numerical convergence of shallow convection cloud field simulations: Comparison between double-moment Eulerian and particle-based Lagrangian microphysics coupled to the same dynamical core. J. Adv. Model. Earth Syst., 10, 14951512, https://doi.org/10.1029/2018MS001285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., J. Leinonen, C. Siewert, and S. Kneifel, 2019: The geometry of rimed aggregate snowflakes: A modeling study. J. Adv. Model. Earth Syst., 11, 712731, https://doi.org/10.1029/2018MS001519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., Y. Sato, A. Hashimoto, and R. Misumi, 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: Development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2. Geosci. Model Dev., 13, 41074157, https://doi.org/10.5194/gmd-13-4107-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokal, A., 1997: Monte Carlo methods in statistical mechanics: Foundations and new algorithms. Functional Integration: Basics and Applications, Springer, 131–192, https://doi.org/10.1007/978-1-4899-0319-8_6.

    • Crossref
    • Export Citation
  • Sölch, I., and B. Kärcher, 2010: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quart. J. Roy. Meteor. Soc., 136, 20742093, https://doi.org/10.1002/qj.689.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12, 436444, https://doi.org/10.1175/1520-0469(1955)012<0436:ANAOCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1964: Statistical effects in the evolution of a distribution of cloud droplets by coalescence. J. Atmos. Sci., 21, 553557, https://doi.org/10.1175/1520-0469(1964)021<0553:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2017: Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations. Geosci. Model Dev., 10, 15211548, https://doi.org/10.5194/gmd-10-1521-2017.

    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2020: Collisional growth in a particle-based cloud microphysical model: Insights from column model simulations using LCM1D (v1. 0). Geosci. Model Dev., 13, 51195145, https://doi.org/10.5194/gmd-13-5119-2020.

    • Search Google Scholar
    • Export Citation
  • Wilkinson, M., 2016: Large deviation analysis of rapid onset of rain showers. Phys. Rev. Lett., 116, 018501, https://doi.org/10.1103/PhysRevLett.116.018501.

    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., and Z. Zhu, 2020: Morphological signatures induced by dust back reaction in discs with an embedded planet. Mon. Not. Roy. Astron. Soc., 491, 47024718, https://doi.org/10.1093/mnras/stz3232.

    • Search Google Scholar
    • Export Citation
  • Zannetti, P., 1984: New Monte Carlo scheme for simulating Lagrangian particle diffusion with wind shear effects. Appl. Math. Model., 8, 188192, https://doi.org/10.1016/0307-904X(84)90088-X.

    • Search Google Scholar
    • Export Citation
  • Zsom, A., and C. P. Dullemond, 2008: A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets. Astron. Astrophys., 489, 931941, https://doi.org/10.1051/0004-6361:200809921.

    • Search Google Scholar
    • Export Citation
  • Zsom, A., C. Ormel, C. Güttler, J. Blum, and C. Dullemond, 2010: The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys., 513, A57, https://doi.org/10.1051/0004-6361/200912976.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 379 117 0
Full Text Views 217 151 34
PDF Downloads 215 125 13