Comparison of Lagrangian Superdroplet and Eulerian Double-Moment Spectral Microphysics Schemes in Large-Eddy Simulations of an Isolated Cumulus Congestus Cloud

Kamal Kant Chandrakar aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kamal Kant Chandrakar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2970-3458
,
Hugh Morrison aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Wojciech W. Grabowski aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
, and
George H. Bryan aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Advanced microphysics schemes (such as Eulerian bin and Lagrangian superdroplet) are becoming standard tools for cloud physics research and parameterization development. This study compares a double-moment bin scheme and a Lagrangian superdroplet scheme via large-eddy simulations of nonprecipitating and precipitating cumulus congestus clouds. Cloud water mixing ratio in the bin simulations is reduced compared to the Lagrangian simulations in the upper part of the cloud, likely from numerical diffusion, which is absent in the Lagrangian approach. Greater diffusion in the bin simulations is compensated by more secondary droplet activation (activation above cloud base), leading to similar or somewhat higher droplet number concentrations and smaller mean droplet radius than the Lagrangian simulations for the nonprecipitating case. The bin scheme also produces a significantly larger standard deviation of droplet radius than the superdroplet method, likely due to diffusion associated with the vertical advection of bin variables. However, the spectral width in the bin simulations is insensitive to the grid spacing between 50 and 100 m, suggesting other mechanisms may be compensating for diffusion as the grid spacing is modified. For the precipitating case, larger spectral width in the bin simulations initiates rain earlier and enhances rain development in a positive feedback loop. However, with time, rain formation in the superdroplet simulations catches up to the bin simulations. Offline calculations using the same drop size distributions in both schemes show that the different numerical methods for treating collision–coalescence also contribute to differences in rain formation. The stochastic collision–coalescence in the superdroplet method introduces more variability in drop growth for a given rain mixing ratio.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu

Abstract

Advanced microphysics schemes (such as Eulerian bin and Lagrangian superdroplet) are becoming standard tools for cloud physics research and parameterization development. This study compares a double-moment bin scheme and a Lagrangian superdroplet scheme via large-eddy simulations of nonprecipitating and precipitating cumulus congestus clouds. Cloud water mixing ratio in the bin simulations is reduced compared to the Lagrangian simulations in the upper part of the cloud, likely from numerical diffusion, which is absent in the Lagrangian approach. Greater diffusion in the bin simulations is compensated by more secondary droplet activation (activation above cloud base), leading to similar or somewhat higher droplet number concentrations and smaller mean droplet radius than the Lagrangian simulations for the nonprecipitating case. The bin scheme also produces a significantly larger standard deviation of droplet radius than the superdroplet method, likely due to diffusion associated with the vertical advection of bin variables. However, the spectral width in the bin simulations is insensitive to the grid spacing between 50 and 100 m, suggesting other mechanisms may be compensating for diffusion as the grid spacing is modified. For the precipitating case, larger spectral width in the bin simulations initiates rain earlier and enhances rain development in a positive feedback loop. However, with time, rain formation in the superdroplet simulations catches up to the bin simulations. Offline calculations using the same drop size distributions in both schemes show that the different numerical methods for treating collision–coalescence also contribute to differences in rain formation. The stochastic collision–coalescence in the superdroplet method introduces more variability in drop growth for a given rain mixing ratio.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu
Save
  • Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., J. Reisner, B. Henson, M. Dubey, and C. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., and S.-i. Shima, 2013: Large-eddy simulations of trade wind cumuli using particle-based microphysics with Monte Carlo coalescence. J. Atmos. Sci., 70, 27682777, https://doi.org/10.1175/JAS-D-12-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R., 1980: A numerical study of radiation fog with an explicit formulation of the microphysics. Quart. J. Roy. Meteor. Soc., 106, 781802, https://doi.org/10.1002/qj.49710645010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovtchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. W. Grabowski, H. Morrison, and G. H. Bryan, 2021: Impact of entrainment-mixing and turbulent fluctuations on droplet size distributions in a cumulus cloud: An investigation using Lagrangian microphysics with a subgrid-scale model. J. Atmos. Sci., 78, 29833005, https://doi.org/10.1175/JAS-D-20-0281.1.

    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P., R. J. Charlson, and J. Seinfeld, 1997: Kinetic limitations on droplet formation in clouds. Nature, 390, 594596, https://doi.org/10.1038/37576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: On modelling nucleation and condensation theory in Eulerian spatial domain. J. Atmos. Sci., 31, 20992117, https://doi.org/10.1175/1520-0469(1974)031<2099:OMNACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., and H. Pawlowska, 2017: Stochastic coalescence in Lagrangian cloud microphysics. Atmos. Chem. Phys., 17, 13 50913 520, https://doi.org/10.5194/acp-17-13509-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eytan, E., I. Koren, O. Altaratz, M. Pinsky, and A. Khain, 2021: Revisiting adiabatic fraction estimations in cumulus clouds: High-resolution simulations with a passive tracer. Atmos. Chem. Phys., 21, 16 20316 217, https://doi.org/10.5194/acp-21-16203-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, W.-K. Tao, and X. Li, 2007: Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. J. Geophys. Res., 112, D04201, https://doi.org/10.1029/2006JD007688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Leviv, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399, https://doi.org/10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2020a: Comparison of Eulerian bin and Lagrangian particle-based microphysics in simulations of nonprecipitating cumulus. J. Atmos. Sci., 77, 39513970, https://doi.org/10.1175/JAS-D-20-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2020b: Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics. J. Atmos. Sci., 77, 11511165, https://doi.org/10.1175/JAS-D-19-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., Y. Noh, and S. Raasch, 2017: The route to raindrop formation in a shallow cumulus cloud simulated by a Lagrangian cloud model. J. Atmos. Sci., 74, 21252142, https://doi.org/10.1175/JAS-D-16-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., T. Yamaguchi, and G. Feingold, 2019: Inhomogeneous mixing in Lagrangian cloud models: Effects on the production of precipitation embryos. J. Atmos. Sci., 76, 113133, https://doi.org/10.1175/JAS-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, https://doi.org/10.1175/2009JAS3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovtchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 91239140, https://doi.org/10.1002/jgrd.50641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y., 2013: A cumulus cloud microphysics parameterization for cloud-resolving models. J. Atmos. Sci., 70, 14231436, https://doi.org/10.1175/JAS-D-12-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86, 235244, https://doi.org/10.1175/BAMS-86-2-235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., and J. Seinfeld, 2011: A continuous spectral aerosol-droplet microphysics model. Atmos. Chem. Phys., 11, 12 29712 316, https://doi.org/10.5194/acp-11-12297-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., A. M. Fridlind, and A. S. Ackerman, 2019: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part I: Collision–coalescence. J. Atmos. Sci., 76, 247263, https://doi.org/10.1175/JAS-D-18-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., A. M. Fridlind, and A. S. Ackerman, 2021: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part II: Condensation and evaporation. J. Atmos. Sci., 78, 1629–1645, https://doi.org/10.1175/JAS-D-20-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., A. Brandenburg, N. E. L. Haugen, and G. Svensson, 2017: Eulerian and Lagrangian approaches to multidimensional condensation and collection. J. Adv. Model. Earth Syst., 9, 11161137, https://doi.org/10.1002/2017MS000930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., B. Mehlig, G. Svensson, A. Brandenburg, and N. E. Haugen, 2021: Fluctuations and growth histories of cloud droplets: Superparticle simulations of the collision-coalescence process. arXiv, 1810.07475, https://arxiv.org/abs/1810.07475.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. L. Kogan, D. K. Lilly, and M. P. Khairoutdinov, 1997: Variational optimization method for calculation of cloud drop growth in an Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504, https://doi.org/10.1175/1520-0469(1997)054<2493:VOMFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2000: Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius. Geophys. Res. Lett., 27, 19031906, https://doi.org/10.1029/1999GL011011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G., D. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, https://doi.org/10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., and A. Seifert, 2015: A Lagrangian drop model to study warm rain microphysical processes in shallow cumulus. J. Adv. Model. Earth Syst., 7, 11361154, https://doi.org/10.1002/2015MS000456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., D. Oh, F. Hoffmann, and S. Raasch, 2018: A cloud microphysics parameterization for shallow cumulus clouds based on Lagrangian cloud model simulations. J. Atmos. Sci., 75, 40314047, https://doi.org/10.1175/JAS-D-18-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., and R. C. Easter, 2009: Nonlinear advection algorithms applied to interrelated tracers: Errors and implications for modeling aerosol–cloud interactions. Mon. Wea. Rev., 137, 632644, https://doi.org/10.1175/2008MWR2626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardo, L. H., H. Morrison, L. A. Machado, J. Y. Harrington, and Z. J. Lebo, 2020: Drop size distribution broadening mechanisms in a bin microphysics Eulerian model. J. Atmos. Sci., 77, 32493273, https://doi.org/10.1175/JAS-D-20-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontikis, C., and E. Hicks, 1992: Contribution to the cloud droplet effective radius parameterization. Geophys. Res. Lett., 19, 22272230, https://doi.org/10.1029/92GL02283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S.-i. Shima, and H. Tomita, 2018: Numerical convergence of shallow convection cloud field simulations: Comparison between double-moment Eulerian and particle-based Lagrangian microphysics coupled to the same dynamical core. J. Adv. Model. Earth Syst., 10, 14951512, https://doi.org/10.1029/2018MS001285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., Y. Sato, A. Hashimoto, and R. Misumi, 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: Development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2. 2. Geosci. Model Dev., 13, 41074157, https://doi.org/10.5194/gmd-13-4107-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmel, M., T. Trautmann, and G. Tetzlaff, 2002: Numerical solution of the stochastic collection equation—Comparison of the linear discrete method with other methods. Atmos. Res., 61, 135148, https://doi.org/10.1016/S0169-8095(01)00131-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 9801006, https://doi.org/10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, T., and J. Brock, 1982: Simulation of condensation aerosol growth by condensation and evaporation. Aerosol Sci. Technol., 2, 311320, https://doi.org/10.1080/02786828308958637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149, https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123328, https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., T. G. Reisin, and Z. Levin, 1999: A numerical solution of the kinetic collection equation using high spectral grid resolution: A proposed reference. J. Comput. Phys., 148, 527544, https://doi.org/10.1006/jcph.1998.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2017: Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations. Geosci. Model Dev., 10, 15211548, https://doi.org/10.5194/gmd-10-1521-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2020: Collisional growth in a particle-based cloud microphysical model: Insights from column model simulations using LCM1D (v1. 0). Geosci. Model Dev., 13, 51195145, https://doi.org/10.5194/gmd-13-5119-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, J. C., P. P. Sullivan, and C.-H. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci., 61, 28772887, https://doi.org/10.1175/JAS-3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, M. K., P. Y. Chuang, O. Ayala, L.-P. Wang, and G. Feingold, 2019: Comparison of observed and simulated drop size distributions from large-eddy simulations with bin microphysics. Mon. Wea. Rev., 147, 477493, https://doi.org/10.1175/MWR-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 481 250 0
Full Text Views 390 291 31
PDF Downloads 408 261 30