Effects of Saharan Dust Aerosols and West African Precipitation on the Energetics of African Easterly Waves

Emily Bercos-Hickey aAtmospheric Science Graduate Group, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Emily Bercos-Hickey in
Current site
Google Scholar
PubMed
Close
,
Terrence R. Nathan aAtmospheric Science Graduate Group, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
, and
Shu-Hua Chen aAtmospheric Science Graduate Group, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Shu-Hua Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of Saharan dust aerosols and West African precipitation on the seasonally averaged energetics of African easterly waves (AEWs) are examined using the Weather Research and Forecasting Model coupled to an interactive dust model. Four experiments are conducted: a control for the period July–September 2008, and three other experiments in which the dust emissions and precipitation are reduced separately and in combination. An analysis of the total energy shows the relative importance of the dust and precipitation to the seasonally averaged AEW strength and AEW tracks, which straddle the African easterly jet (AEJ). Changes in the dust amount have a larger effect on the strength of the AEWs than changes in the precipitation amount. The north AEW track is more strongly affected by changes in dust, while the south AEW track is more strongly affected by changes in precipitation. An analysis of the energy conversions aids in identifying the relative importance of the wave–mean flow interaction pathways that connect the dust and precipitation fields to the AEJ–AEW system. The analysis shows that the variability of the AEWs is primarily coupled to the dust- and precipitation-modified variability of the AEJ through wave–mean flow interaction. These results are discussed in light of tropical cyclone development over the eastern Atlantic Ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily Bercos-Hickey, ebercosh@ucdavis.edu

Abstract

The effects of Saharan dust aerosols and West African precipitation on the seasonally averaged energetics of African easterly waves (AEWs) are examined using the Weather Research and Forecasting Model coupled to an interactive dust model. Four experiments are conducted: a control for the period July–September 2008, and three other experiments in which the dust emissions and precipitation are reduced separately and in combination. An analysis of the total energy shows the relative importance of the dust and precipitation to the seasonally averaged AEW strength and AEW tracks, which straddle the African easterly jet (AEJ). Changes in the dust amount have a larger effect on the strength of the AEWs than changes in the precipitation amount. The north AEW track is more strongly affected by changes in dust, while the south AEW track is more strongly affected by changes in precipitation. An analysis of the energy conversions aids in identifying the relative importance of the wave–mean flow interaction pathways that connect the dust and precipitation fields to the AEJ–AEW system. The analysis shows that the variability of the AEWs is primarily coupled to the dust- and precipitation-modified variability of the AEJ through wave–mean flow interaction. These results are discussed in light of tropical cyclone development over the eastern Atlantic Ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily Bercos-Hickey, ebercosh@ucdavis.edu
Save
  • Bercos-Hickey, E., and C. M. Patricola, 2021: Anthropogenic influences on the African easterly jet–African easterly wave system. Climate Dyn., 57, 27792792, https://doi.org/10.1007/s00382-021-05838-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., T. R. Nathan, and S.-H. Chen, 2017: Saharan dust and the African easterly jet–African easterly wave system: Structure, location, and energetics. Quart. J. Roy. Meteor. Soc., 143, 27972808, https://doi.org/10.1002/qj.3128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., T. R. Nathan, and S.-H. Chen, 2020: On the relationship between the African easterly jet, Saharan mineral dust aerosols, and West African precipitation. J. Climate, 33, 35333546, https://doi.org/10.1175/JCLI-D-18-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, https://doi.org/10.1175/JAS-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., Y.-C. Liu, T. R. Nathan, C. Davis, R. Torn, N. Sowa, C.-T. Cheng, and J.-P. Chen, 2015: Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 141, 25632570, https://doi.org/10.1002/qj.2542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Coauthors, 2021: Impacts of Saharan mineral dust on air-sea interaction over North Atlantic Ocean using a fully coupled regional model. J. Geophys. Res. Atmos., 126, e2020JD033586, https://doi.org/10.1029/2020JD033586.

    • Crossref
    • Export Citation
  • Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos. Res., 96, 461476, https://doi.org/10.1016/j.atmosres.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornforth, R. J., B. J. Hoskins, and C. D. Thorncroft, 2009: The impact of moist processes on the African easterly jet–African easterly wave system. Quart. J. Roy. Meteor. Soc., 135, 894913, https://doi.org/10.1002/qj.414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., and S. E. Nicholson, 2011: A note on long-term variations of the African easterly jet. Int. J. Climatol., 31, 20492054, https://doi.org/10.1002/joc.2209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diallo, I., M. B. Sylla, M. Camara, and A. T. Gaye, 2013: Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor. Appl. Climatol., 113, 351362, https://doi.org/10.1007/s00704-012-0791-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112, D03103, https://doi.org/10.1029/2006JD007195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., 2002: Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet and dry years. Mon. Wea. Rev., 130, 197211, https://doi.org/10.1175/1520-0493(2002)130<0197:EWOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14, 13371359, https://doi.org/10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. E. Nicholson, and A. I. Barcilon, 2002: Easterly waves over Africa. Part II: Observed and modeled contrasts between wet and dry years. Mon. Wea. Rev., 130, 212225, https://doi.org/10.1175/1520-0493(2002)130<0212:EWOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., and C. D. Thorncroft, 2019: The characteristics of African easterly waves coupled to Saharan mineral dust aerosols. Quart. J. Roy. Meteor. Soc., 145, 11301146, https://doi.org/10.1002/qj.3483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2016: Effects of Saharan dust on the linear dynamics of African easterly waves. J. Atmos. Sci., 73, 891911, https://doi.org/10.1175/JAS-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2017: Saharan dust and the nonlinear evolution of the African easterly jet–African easterly wave system. J. Atmos. Sci., 74, 2747, https://doi.org/10.1175/JAS-D-16-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2019: Structural changes in the African easterly jet and its role in mediating the effects of Saharan dust on the linear dynamics of African easterly waves. J. Atmos. Sci., 76, 33513365, https://doi.org/10.1175/JAS-D-19-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, W. Chen, and H. Liao, 2010: Direct climate effect of black carbon in China and its impact on dust storms. J. Geophys. Res., 115, D00K14, https://doi.org/10.1029/2009JD013427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, https://doi.org/10.1029/2010JD014574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. N. Liou, J. H. Jiang, H. Su, and X. Liu, 2012: Dust aerosol impact on North Africa climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 16671679, https://doi.org/10.5194/acp-12-1667-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, https://doi.org/10.1175/JAS3742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2009: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440, https://doi.org/10.1175/JAS3851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.-C., and Coauthors, 2019: Impacts of dust–radiation versus dust–cloud interactions on the development of a modeled mesoscale convective system over North Africa. Mon. Wea. Rev., 147, 33013326, https://doi.org/10.1175/MWR-D-18-0459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31, L17208, https://doi.org/10.1029/2004GL020107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and M. J. Santiago, 2010: Composite analysis of dust impacts on African easterly waves in the moderate resolution imaging spectrometer era. J. Geophys. Res., 115, D16213, https://doi.org/10.1029/2009JD013612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konaré, A., A. Zakey, F. Solmon, F. Giorgi, S. Rauscher, S. Ibrah, and X. Bi, 2008: A regional climate modeling study of the effect of desert dust on the West African monsoon. J. Geophys. Res., 113, D12206, https://doi.org/10.1029/2007JD009322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. J. Parker, J.-P. Lafore, B. Sultan, and J. Pelon, 2009: Seasonal evolution of the West African heat low: A climatological perspective. Climate Dyn., 33, 313330, https://doi.org/10.1007/s00382-009-0553-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., K. Zhang, J. J. Shi, T. Matsui, and A. Arking, 2012: Direct radiative effect of mineral dust on the development of African easterly waves in late summer, 2003–07. J. Appl. Meteor. Climatol., 51, 20902104, https://doi.org/10.1175/JAMC-D-11-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and Coauthors, 2010: Temporal variability of mineral dust concentrations over West Africa: Analyses of a pluriannual monitoring from the AMMA Sahelian dust transect. Atmos. Chem. Phys., 10, 88998915, https://doi.org/10.5194/acp-10-8899-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., D. A. Randall, and C. Stan, 2014: Simulations of the West African monsoon with a superparameterized climate model. Part II: African easterly waves. J. Climate, 27, 83238341, https://doi.org/10.1175/JCLI-D-13-00677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2018: The interaction between deep convection and easterly wave activity over Africa: Convective transitions and mechanisms. Mon. Wea. Rev., 146, 19451961, https://doi.org/10.1175/MWR-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., D. F. P. Grogan, and S.-H. Chen, 2017: Subcritical destabilization of African easterly waves by Saharan mineral dust. J. Atmos. Sci., 74, 10391055, https://doi.org/10.1175/JAS-D-16-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., D. F. P. Grogan, and S.-H. Chen, 2019: Saharan dust transport during the incipient growth phase of African easterly waves. Geosciences, 9, 388, https://doi.org/10.3390/geosciences9090388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. D. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., W. K. Lau, K.-M. Kim, and E. Brin, 2009: Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system. J. Atmos. Sci., 66, 35633578, https://doi.org/10.1175/2009JAS3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of interactive aerosol on the African easterly jet in the NASA GEOS-5 global forecasting system. Wea. Forecasting, 26, 504519, https://doi.org/10.1175/WAF-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O. H., and A. Aiyyer, 2020: The potential vorticity structure and dynamics of African easterly waves. J. Atmos. Sci., 77, 871890, https://doi.org/10.1175/JAS-D-19-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O. H., A. Aiyyer, and J. D. White, 2020: African easterly wave dynamics in convection-permitting simulations: Rotational stratiform instability as a conceptual model. J. Adv. Model. Earth Syst., 12, e2019MS001706, https://doi.org/10.1029/2019MS001706.

    • Crossref
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 16791684, https://doi.org/10.1175/1520-0469(1980)037<1679:BIOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., N. Elguindi, and M. Mallet, 2012: Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Res., 52, 97113, https://doi.org/10.3354/cr01039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 34073427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., S. Janicot, and A. Diedhiou, 2003: The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16, 33893406, https://doi.org/10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., I. Diallo, and J. S. Pal, 2013: West African monsoon in state-of-the-science regional climate models. Climate Variability, IntechOpen, https://doi.org/10.5772/55140.

    • Crossref
    • Export Citation
  • Tegen, I., and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res., 99, 22 897–22 914, https://doi.org/10.1029/94JD01928.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, https://doi.org/10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, https://doi.org/10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., D. J. Parker, A. Stirling, C. Bain, C. Senior, and S. Milton, 2017: The interaction between moist diabatic processes and the atmospheric circulation in African easterly wave propagation. Quart. J. Roy. Meteor. Soc., 143, 32073227, https://doi.org/10.1002/qj.3173.

    • Search Google Scholar
    • Export Citation
  • Zhu, A., V. Ramanathan, F. Li, and D. Kim, 2007: Dust plumes over the Pacific, Indian, and Atlantic Oceans: Climatology and radiative impact. J. Geophys. Res., 112, D16208, https://doi.org/10.1029/2007JD008427.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 306 131 0
Full Text Views 209 152 8
PDF Downloads 235 157 7