Empirical Low-Dimensional Dynamics of Atmospheric Stable Boundary Layer Temperature Inversions

Elizabeth Ramsey aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Elizabeth Ramsey in
Current site
Google Scholar
PubMed
Close
and
Adam H. Monahan aSchool of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Adam H. Monahan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric stable boundary layer (SBL) is observed to display multiple regimes of stratification, flow, and turbulence. Transitions between weakly stable regimes of sustained turbulence and very stable regimes of weak turbulence are observed to occur abruptly. The understanding and predictability of turbulent recovery remains limited, reducing the accuracy of numerical weather prediction and climate projections. Idealized SBL models have related regimes to dynamically stable equilibria. Under conditions of weak energetic surface coupling, two stable branches separated by an unstable branch are predicted by these models. Such bifurcation structures are associated with rapid transitions. This work investigates the extent to which observed temperature inversion variability can be described by an empirical one-dimensional stochastic differential equation (SDE). The drift and diffusion coefficients of the SDE of observed inversion strength are approximated from statistics of their averaged time tendencies, conditioned on wind speed. Functional forms of the state dependence of these coefficients are estimated using Gaussian process regression. Probabilistic estimates of the system’s deterministic equilibria are found and used to create empirical bifurcation diagrams of inversion strength as a function of wind speed. These data-driven bifurcation structures are first obtained from idealized model simulations, then repeated for observations from several meteorological towers. It is found that the effective low-dimensional dynamics of observed temperature inversions is similar to that of the idealized model. Evidence of multiple equilibria and hysteresis is found at a single site, Dome C, Antarctica, but is not robust to variations in the analysis. Evidence of state-dependent noise consistent with intermittent turbulence under very stably stratified conditions is presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth Ramsey, monahana@uvic.ca

Abstract

The atmospheric stable boundary layer (SBL) is observed to display multiple regimes of stratification, flow, and turbulence. Transitions between weakly stable regimes of sustained turbulence and very stable regimes of weak turbulence are observed to occur abruptly. The understanding and predictability of turbulent recovery remains limited, reducing the accuracy of numerical weather prediction and climate projections. Idealized SBL models have related regimes to dynamically stable equilibria. Under conditions of weak energetic surface coupling, two stable branches separated by an unstable branch are predicted by these models. Such bifurcation structures are associated with rapid transitions. This work investigates the extent to which observed temperature inversion variability can be described by an empirical one-dimensional stochastic differential equation (SDE). The drift and diffusion coefficients of the SDE of observed inversion strength are approximated from statistics of their averaged time tendencies, conditioned on wind speed. Functional forms of the state dependence of these coefficients are estimated using Gaussian process regression. Probabilistic estimates of the system’s deterministic equilibria are found and used to create empirical bifurcation diagrams of inversion strength as a function of wind speed. These data-driven bifurcation structures are first obtained from idealized model simulations, then repeated for observations from several meteorological towers. It is found that the effective low-dimensional dynamics of observed temperature inversions is similar to that of the idealized model. Evidence of multiple equilibria and hysteresis is found at a single site, Dome C, Antarctica, but is not robust to variations in the analysis. Evidence of state-dependent noise consistent with intermittent turbulence under very stably stratified conditions is presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth Ramsey, monahana@uvic.ca
Save
  • Abraham, C., and A. H. Monahan, 2019a: Climatological features of the weakly and very stably stratified nocturnal boundary layers. Part I: State variables containing information about regime occupation. J. Atmos. Sci., 76, 34553484, https://doi.org/10.1175/JAS-D-18-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abraham, C., and A. H. Monahan, 2019b: Climatological features of the weakly and very stably stratified nocturnal boundary layers. Part II: Regime occupation and transition statistics and the influence of external drivers. J. Atmos. Sci., 76, 34853504, https://doi.org/10.1175/JAS-D-19-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abraham, C., and A. H. Monahan, 2019c: Climatological features of the weakly and very stably stratified nocturnal boundary layers. Part III: The structure of meteorological state variables in persistent regime nights and across regime transitions. J. Atmos. Sci., 76, 35053527, https://doi.org/10.1175/JAS-D-18-0274.1.

    • Search Google Scholar
    • Export Citation
  • Abraham, C., A. M. Holdsworth, and A. H. Monahan, 2019: A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer. Nonlinear Processes Geophys., 26, 401427, https://doi.org/10.5194/npg-26-401-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., F. D. Costa, R. Maroneze, A. D. Carvalho, F. S. Puhales, and P. E. S. Oliveira, 2021: External controls on the transition between stable boundary-layer turbulence regimes. Quart. J. Roy. Meteor. Soc., 147, 23352351, https://doi.org/10.1002/qj.4027.

    • Crossref
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, E. van Meijgaard, E. Vignon, C. Genthon, S. J. A. van der Linden, and S. R. de Roode, 2019: Transitions in the wintertime near-surface temperature inversion at Dome C, Antarctica. Quart. J. Roy. Meteor. Soc., 145, 930946, https://doi.org/10.1002/qj.3450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., N. Kalthoff, and F. Fiedler, 2003: Influence of high-frequency radiation on turbulence measurements on a 200 m tower. Meteor. Z., 12, 6771, https://doi.org/10.1127/0941-2948/2003/0012-0067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., P. Baas, A. C. M. Beljaars, A. A. M. Holtslag, J. V.-G. de Arellano, and B. J. H. van de Wiel, 2020: Fifty years of atmospheric boundary-layer research at Cabauw serving weather, air quality and climate. Bound.-Layer Meteor., 177, 583612, https://doi.org/10.1007/s10546-020-00541-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, B. M., J. A. Baars, and G. L. Stone, 2000: Nocturnal wind direction shear and its potential impact on pollutant transport. J. Appl. Meteor., 39, 437445, https://doi.org/10.1175/1520-0450(2000)039<0437:NWDSAI>2.0.CO;2.

    • Crossref
    • Export Citation
  • Boyko, V., S. Krumscheid, and N. Vercauteren, 2021: Statistical learning of nonlinear stochastic differential equations from non-stationary time series using variational clustering. arXiv, 2102.12395, http://arxiv.org/abs/2102.12395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruggeman, D. A., 2017: Los Alamos climatology 2016 update. LANL Tech. Rep. LA-UR-17-21060, 93 pp., https://doi.org/10.2172/1343690.

    • Crossref
    • Export Citation
  • Brümmer, B., I. Lange, and H. Konow, 2012: Atmospheric boundary layer measurements at the 280 m high Hamburg weather mast 1995–2011: Mean annual and diurnal cycles. Meteor. Z., 21, 319335, https://doi.org/10.1127/0941-2948/2012/0338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90, 297325, https://doi.org/10.1023/A:1001710014316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and Coauthors, 2014: Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Commun. Comput. Phys., 15, 145, https://doi.org/10.4208/cicp. 240912.180613a.

    • Crossref
    • Export Citation
  • Faranda, D., B. Dubrulle, and F. M. E. Pons, 2014: Statistical early-warning indicators based on autoregressive moving-average models. J. Phys., 47A, 252001, https://doi.org/10.1088/1751-8113/47/25/252001.

    • Crossref
    • Export Citation
  • Friedrich, R., and Coauthors, 2000: Extracting model equations from experimental data. Phys. Lett., 271A, 217222, https://doi.org/10.1016/S0375-9601(00)00334-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, R., J. Peinke, M. Sahimi, and M. R. R. Tabar, 2011: Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep., 506, 87162, https://doi.org/10.1016/j.physrep.2011.05.003.

    • Crossref
    • Export Citation
  • García, C. A., A. Otero, P. Félix, J. Presedo, and D. G. Márquez, 2017: Nonparametric estimation of stochastic differential equations with sparse Gaussian processes. Phys. Rev. E, 96, 022104, https://doi.org/10.1103/PhysRevE.96.022104.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C., 1990: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences. Lecture Notes in Mathematics, Springer, 410 pp.

    • Crossref
    • Export Citation
  • Genthon, C., M. S. Town, D. Six, V. Favier, S. Argentini, and A. Pellegrini, 2010: Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J. Geophys. Res., 115, D05104, https://doi.org/10.1029/2009JD012741.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., D. Six, H. Gallée, P. Grigioni, and A. Pellegrini, 2013: Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic Plateau. J. Geophys. Res. Atmos., 118, 32183232, https://doi.org/10.1002/jgrd.50128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., D. E. Veron, E. Vignon, D. Six, J.-L. Dufresne, J.-B. Madeleine, E. Sultan, and F. Forget, 2021: Ten years of temperature and wind observation on a 45-m tower at Dome C, east Antarctic Plateau. Earth Syst. Sci. Data, 13, 57315746, https://doi.org/10.5194/essd-13-5731-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S.-E., R. Floors, A. Peña, E. Batchvarova, and B. Brümmer, 2016: Weibull wind-speed distribution parameters derived from a combination of wind-lidar and tall-mast measurements over land, coastal and marine sites. Bound.-Layer Meteor., 159, 329348, https://doi.org/10.1007/s10546-015-0113-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdsworth, A. M., and A. H. Monahan, 2019: Turbulent collapse and recovery in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget. J. Atmos. Sci., 76, 13071327, https://doi.org/10.1175/JAS-D-18-0312.1.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, A. M., T. Rees, and A. H. Monahan, 2016: Parameterization sensitivity and instability characteristics of the maximum sustainable heat flux framework for predicting turbulent collapse. J. Atmos. Sci., 73, 35273540, https://doi.org/10.1175/JAS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, A., D. Faranda, S. Krumscheid, D. Belušić, and N. Vercauteren, 2020: Detecting regime transitions of the nocturnal and polar near-surface temperature inversion. J. Atmos. Sci., 77, 29212940, https://doi.org/10.1175/JAS-D-19-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and B. Vogel, 1992: Counter-current and channelling effect under stable stratification in the area of Karlsruhe. Theor. Appl. Climatol., 45, 113126, https://doi.org/10.1007/BF00866400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohler, M., J. Metzger, and N. Kalthoff, 2018: Trends in temperature and wind speed from 40 years of observations at a 200-m high meteorological tower in southwest Germany. Int. J. Climatol., 38, 2334, https://doi.org/10.1002/joc.5157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krumscheid, S., M. Pradas, G. A. Pavliotis, and S. Kalliadasis, 2015: Data-driven coarse graining in action: Modeling and prediction of complex systems. Phys. Rev. E, 92, 042139, https://doi.org/10.1103/PhysRevE.92.042139.

    • Crossref
    • Export Citation
  • LeMone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.

    • Crossref
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, https://doi.org/10.1007/s001620050093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2014: Wind speed probability distribution. Encyclopedia of Natural Resources: Air, Vol. 2, 1st ed. Taylor and Francis, 10841088, https://doi.org/10.1201/9780203757611.

    • Crossref
    • Export Citation
  • Monahan, A. H., and J. Culina, 2011: Stochastic averaging of idealized climate models. J. Climate, 24, 30683088, https://doi.org/10.1175/2011JCLI3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., T. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, https://doi.org/10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84, 921926, https://doi.org/10.1175/BAMS-84-7-921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petenko, I., S. Argentini, G. Casasanta, C. Genthon, and M. Kallistratova, 2019: Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations. Bound.-Layer Meteor., 171, 101128, https://doi.org/10.1007/s10546-018-0419-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsey, E., 2021: Empirical bifurcation analysis of atmospheric stable boundary layer regime occupation. Ph.D. dissertation, University of Victoria, 89 pp., http://hdl.handle.net/1828/12988.

    • Crossref
    • Export Citation
  • Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes for Machine Learning. MIT Press, 266 pp.

    • Crossref
    • Export Citation
  • Scheffer, M., and Coauthors, 2009: Early-warning signals for critical transitions. Nature, 461, 5359, https://doi.org/10.1038/nature08227.

  • Siegert, S., R. Friedrich, and J. Peinke, 1998: Analysis of data sets of stochastic systems. Phys. Lett., 243A, 275280, https://doi.org/10.1016/S0375-9601(98)00283-7.

    • Search Google Scholar
    • Export Citation
  • Sommerfeld, M., C. Crawford, A. Monahan, and I. Bastigkeit, 2019: Lidar-based characterization of mid-altitude wind conditions for airborne wind energy systems. Wind Energy, 22, 11011120, https://doi.org/10.1002/we.2343.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, https://doi.org/10.1023/A:1019969131774.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, https://doi.org/10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Search Google Scholar
    • Export Citation
  • Sura, P., and J. Barsugli, 2002: A note on estimating drift and diffusion parameters from timeseries. Phys. Lett., 305A, 304311, https://doi.org/10.1016/S0375-9601(02)01474-3.

    • Search Google Scholar
    • Export Citation
  • Twardowska, K., 1996: Wong-Zakai approximations for stochastic differential equations. Acta Appl. Math., 43, 317359, https://doi.org/10.1007/BF00047670.

    • Search Google Scholar
    • Export Citation
  • van der Linden, S. J. A., B. J. H. van de Wiel, I. Petenko, C. C. van Heerwaarden, P. Baas, and H. J. J. Jonker, 2020: A Businger mechanism for intermittent bursting in the stable boundary layer. J. Atmos. Sci., 77, 33433360, https://doi.org/10.1175/JAS-D-19-0309.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522, https://doi.org/10.1175/1520-0469(2003)060<2509:ITITSB>2.0.CO;2.

  • van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combus., 79, 251274, https://doi.org/10.1007/s10494-007-9094-2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, https://doi.org/10.1175/JAS-D-12-064.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 10571073, https://doi.org/10.1175/JAS-D-16-0180.1.

    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., J. M. M. Donda, H. J. H. Clercx, F. C. Bosveld, and B. J. H. van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, https://doi.org/10.1175/JAS-D-14-0140.1.

    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., A. F. Moene, M. Scheffer, H. J. H. Clercx, and B. J. H. van de Wiel, 2017a: Early warning signals for regime transition in the stable boundary layer: A model study. Bound.-Layer Meteor., 162, 283306, https://doi.org/10.1007/s10546-016-0199-9.

    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., and Coauthors, 2017b: Near-surface temperature inversion growth rate during the onset of the stable boundary layer. J. Atmos. Sci., 74, 34333449, https://doi.org/10.1175/JAS-D-17-0084.1.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, https://doi.org/10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Vignon, E., C. Genthon, H. Barral, C. Amory, G. Picard, H. Gallée, G. Casasanta, and S. Argentini, 2017a: Momentum- and heat-flux parametrization at Dome C, Antarctica: A sensitivity study. Bound.-Layer Meteor., 162, 341367, https://doi.org/10.1007/s10546-016-0192-3.

    • Search Google Scholar
    • Export Citation
  • Vignon, E., and Coauthors, 2017b: Stable boundary-layer regimes at Dome C, Antarctica: Observation and analysis. Quart. J. Roy. Meteor. Soc., 143, 12411253, https://doi.org/10.1002/qj.2998.

    • Search Google Scholar
    • Export Citation
  • Wenzel, A., N. Kalthoff, and V. Horlacher, 1997: On the profiles of wind velocity in the roughness sublayer above a coniferous forest. Bound.-Layer Meteor., 84, 219230, https://doi.org/10.1023/A:1000444911103.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 621 120 0
Full Text Views 197 102 8
PDF Downloads 219 100 9