Environmental Controls on Simulated Deep Moist Convection Initiation Occurring during RELAMPAGO-CACTI

T. Connor Nelson aCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
bNOAA/NWS Operations Proving Ground, Kansas City, Missouri
cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by T. Connor Nelson in
Current site
Google Scholar
PubMed
Close
,
James Marquis dPacific Northwest National Laboratory, Richland, Washington
eDepartment of Meteorology, U.S. Naval Postgraduate School, Monterey, California

Search for other papers by James Marquis in
Current site
Google Scholar
PubMed
Close
,
John M. Peters eDepartment of Meteorology, U.S. Naval Postgraduate School, Monterey, California

Search for other papers by John M. Peters in
Current site
Google Scholar
PubMed
Close
, and
Katja Friedrich cDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI Special Collection.

Corresponding author: T. Connor Nelson, tconnorn@colostate.edu

Abstract

This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1- to 2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger (∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free-tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the RELAMPAGO-CACTI Special Collection.

Corresponding author: T. Connor Nelson, tconnorn@colostate.edu
Save
  • Banta, R., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356, https://doi.org/10.1175/1520-0493(1984)112<0340:DBLEOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463476, https://doi.org/10.1175/1520-0493(1987)115<0463:TGZITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2011: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart. J. Roy. Meteor. Soc., 137 (Suppl. 1), 81100, https://doi.org/10.1002/qj.758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. J. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part I: Circulation without deep convection. Mon. Wea. Rev., 138, 19021922, https://doi.org/10.1175/2009MWR3098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., J. D. Doyle, T. P. Lane, R. D. Sharman, and P. K. Smolarkiewicz, 2005: On physical reliability and uncertainty of numerical solutions. Atmos. Sci. Lett., 6, 118122, https://doi.org/10.1002/asl.100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, https://doi.org/10.1175/WAF-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J., G. Vali, and R. D. Kelly, 1999: Evolution of small cumulus clouds in Florida: Observations of pulsating growth. Atmos. Res., 52, 143165, https://doi.org/10.1016/S0169-8095(99)00024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., https://doi.org/10.5065/D62V2D1B.

    • Crossref
    • Export Citation
  • Hagen, M., J. Baelen, and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137 (Suppl. 1), 224235, https://doi.org/10.1002/qj.784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2018: On the role of entrainment in the fate of cumulus thermals. J. Atmos. Sci., 75, 39113924, https://doi.org/10.1175/JAS-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and D. Niyogi, 2007: The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Mon. Wea. Rev., 135, 30133032, https://doi.org/10.1175/MWR3449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, https://doi.org/10.1175/2010JAS3642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, https://doi.org/10.1175/JAS-D-12-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2017: On upstream blocking over heated mountain ridges. Quart. J. Roy. Meteor. Soc., 143, 5368, https://doi.org/10.1002/qj.2945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2020: Numerical simulations of orographic convection across multiple gray zones. J. Atmos. Sci., 77, 33013320, https://doi.org/10.1175/JAS-D-20-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and C. C. Wang, 2014: Boundary layer updrafts driven by airflow over heated terrain. J. Atmos. Sci., 71, 14251442, https://doi.org/10.1175/JAS-D-13-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lecoanet, D., and N. Jeevanjee, 2019: Entrainment in resolved, dry thermals. J. Atmos. Sci., 76, 37853801, https://doi.org/10.1175/JAS-D-18-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leger, J., J. P. Lafore, J. M. Piriou, and J. F. Guérémy, 2019: A simple model of convective drafts accounting for the perturbation pressure term. J. Atmos. Sci., 76, 31293149, https://doi.org/10.1175/JAS-D-18-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., A. C. Varble, P. Robinson, T. C. Nelson, and K. Friedrich, 2021: Low-level mesoscale and cloud-scale interactions promoting deep convection initiation. Mon. Wea. Rev., 149, 24732495, https://doi.org/10.1175/MWR-D-20-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations. J. Atmos. Sci., 73, 14551480, https://doi.org/10.1175/JAS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, and S. C. Sherwood, 2021: Comparing growth rates of simulated moist and dry convective thermals. J. Atmos. Sci., 78, 797816, https://doi.org/10.1175/JAS-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling perspective. J. Atmos. Sci., 77, 39293949, https://doi.org/10.1175/JAS-D-19-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, A. Varble, and K. Friedrich, 2021: Radiosonde observations of environments supporting deep moist convection initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289309, https://doi.org/10.1175/MWR-D-20-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Coauthors, 2021: A storm safari in subtropical South America: Proyecto RELAMPAGO. Bull. Amer. Meteor. Soc., 102, E1621E1644, https://doi.org/10.1175/BAMS-D-20-0029.1.

    • Crossref
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2014: Properties of a simulated convective boundary layer in an idealized supercell thunderstorm environment. Mon. Wea. Rev., 142, 39553976, https://doi.org/10.1175/MWR-D-13-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. Mulholland, and C. J. Nowotarski, 2022a: The influence of shear on deep convection initiation. Part I: Theory. J. Atmos. Sci., 79, 16691690, https://doi.org/10.1175/JAS-D-21-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. Mulholland, and C. J. Nowotarski, 2022b: The influence of shear on deep convection initiation. Part II: Simulations. J. Atmos. Sci., 79, 16911711, https://doi.org/10.1175/JAS-D-21-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Rousseau-Rizzi, R., D. J. Kirshbaum, and M. K. Yau, 2017: Initiation of deep convection over an idealized mesoscale convergence line. J. Atmos. Sci., 74, 835853, https://doi.org/10.1175/JAS-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Coauthors, 2021: Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 14391458, https://doi.org/10.1175/MWR-D-20-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, I., S. W. Nesbitt, and C. A. Davis, 2022: Quasi-idealized numerical simulations of processes involved in orogenic convection initiation over the Sierras de Córdoba. J. Atmos. Sci., 79, 11271149, https://doi.org/10.1175/JAS-D-21-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, https://doi.org/10.1175/MWR-D-13-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., Y. Zhang, S. A. Klein, and C. Schumacher, 2021: Interpreting the diurnal cycle of clouds and precipitation in the ARM GoAmazon observations: Shallow to deep convection transition. J. Geophys. Res. Atmos., 126, e2020JD033766, https://doi.org/10.1029/2020JD033766.

  • Trier, S., F. Chen, and K. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, https://doi.org/10.1175/MWR2839.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S., J. H. Marsham, C. A. Davis, and D. A. Ahijevych, 2011: Numerical simulations of the postsunrise reorganization of a nocturnal mesoscale convective system during 13 June IHOP 2002. J. Atmos. Sci., 68, 29883011, https://doi.org/10.1175/JAS-D-11-0112.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2021: Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Amer. Meteor. Soc., 102, E1597E1620, https://doi.org/10.1175/BAMS-D-20-0030.1.

  • Wang, Q., M. Xue, and Z. Tan, 2016: Convective initiation by topographically induced convergence forcing over the Dabie Mountains on 24 June 2010. Adv. Atmos. Sci., 33, 11201136, https://doi.org/10.1007/s00376-016-6024-z.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J. C. Golaz, and Q. Wang, 2008: Effect of intense wind shear across the inversion on stratocumulus clouds. Geophys. Res. Lett., 35, L15814, https://doi.org/10.1029/2008GL033865.

  • Wang, S., X. Zheng, and Q. Jiang, 2012: Strongly sheared stratocumulus convection: An observationally based large-eddy simulation study. Atmos. Chem. Phys., 12, 52235235, https://doi.org/10.5194/acp-12-5223-2012.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, https://doi.org/10.1175/MWR3072.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, https://doi.org/10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 885 246 0
Full Text Views 1239 989 45
PDF Downloads 639 352 29