• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and Y. Ming, 2018: Moisture and moist static energy budgets of South Asian monsoon low pressure systems in GFDL AM4.0. J. Atmos. Sci., 75, 21072123, https://doi.org/10.1175/JAS-D-17-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and E. D. Maloney, 2021: Moisture mode theory’s contribution to advances in our understanding of the Madden-Julian oscillation and other tropical disturbances. Curr. Climate Change Rep., 7, 7285, https://doi.org/10.1007/s40641-021-00172-4.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, S. K. Clark, Y. Ming, and K. Inoue, 2019: Scale analysis of moist thermodynamics in a simple model and the relationship between moisture modes and gravity waves. J. Atmos. Sci., 76, 38633881, https://doi.org/10.1175/JAS-D-19-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, E. D. Maloney, and A. H. Sobel, 2020: The moisture mode framework of the Madden–Julian oscillation. The Multiscale Global Monsoon System, World Scientific, 273287.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical precipitation evolution in a buoyancy-budget framework. J. Atmos. Sci., 78, 509528, https://doi.org/10.1175/JAS-D-20-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., J. D. Neelin, and Á. F. Adames, 2021: Quasi-equilibrium and weak temperature gradient balances in an equatorial beta-plane model. J. Atmos. Sci., 78, 209227, https://doi.org/10.1175/JAS-D-20-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, https://doi.org/10.1175/JAS-D-13-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1955: Numerical forecasting with the barotropic model 1. Tellus, 7, 2749, https://doi.org/10.3402/tellusa.v7i1.8770.

  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920, https://doi.org/10.1175/1520-0442(2002)015<2907:ASMOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, G., H. Kreiss, and W. Schubert, 2000: The role of gravity waves in slowly varying in time tropospheric motions near the equator. J. Atmos. Sci., 57, 40084019, https://doi.org/10.1175/1520-0469(2001)058<4008:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1974: Characteristics of North African easterly waves during the summers of 1968 and 1969. J. Atmos. Sci., 31, 15561570, https://doi.org/10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7, 2226, https://doi.org/10.3402/tellusa.v7i1.8772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, and Á. F. Adames, 2020: Monsoon low pressure system–like variability in an idealized moist model. J. Climate, 33, 20512074, https://doi.org/10.1175/JCLI-D-19-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., and Coauthors, 2015: Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst., 7, 15761601, https://doi.org/10.1002/2015MS000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delayen, K., and J.-I. Yano, 2008: Is asymptotic non-divergence of the large-scale tropical atmosphere consistent with equatorial wave theories? Tellus, 61A, 491497, https://doi.org/10.1111/j.1600-0870.2009.00404.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2013: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, https://doi.org/10.1175/JAS-D-12-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2021: Evolution of idealized vortices in monsoon-like shears: Application to monsoon depressions. J. Atmos. Sci., 78, 12071225, https://doi.org/10.1175/JAS-D-20-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2020: Slow modes of the equatorial waveguide. J. Atmos. Sci., 77, 15751582, https://doi.org/10.1175/JAS-D-19-0281.1.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1999: The role of tropical cyclones in the formation of tropical upper-tropospheric troughs. J. Atmos. Sci., 56, 28912907, https://doi.org/10.1175/1520-0469(1999)056<2891:TROTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64, 20762090, https://doi.org/10.1175/JAS3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, https://doi.org/10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., D. J. Raymond, and S. Sentic, 2019: A simple model of convectively coupled equatorial Rossby waves. J. Adv. Model. Earth Syst., 11, 173184, https://doi.org/10.1029/2018MS001433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., and D. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, https://doi.org/10.5194/acp-14-3065-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2019: Distinct propagation characteristics of intraseasonal variability over the tropical west Pacific. J. Geophys. Res. Atmos., 124, 53325351, https://doi.org/10.1029/2018JD029884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, https://doi.org/10.1175/JAS-D-11-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, https://doi.org/10.1175/JAS3352.1.

  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 20212031, https://doi.org/10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., and A. E. Gill, 1984: Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203217, https://doi.org/10.1002/qj.49711046314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Hoskins, 1985: Large-scale eddies and the general circulation of the troposphere. Adv. Geophys., 28, 331, https://doi.org/10.1016/S0065-2687(08)60218-6.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, https://doi.org/10.1175/2008JAS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, M. J., and D. J. Raymond, 2014: WTG cloud modeling with spectral decomposition of heating. J. Adv. Model. Earth Syst., 6, 11211140, https://doi.org/10.1002/2014MS000359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and S. J. Woolnough, 2016: The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst., 8, 166195, https://doi.org/10.1002/2015MS000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 104. Academic Press, 432 pp.

  • Inoue, K., and L. E. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 41484166, https://doi.org/10.1175/JAS-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. E. Back, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. J. Atmos. Sci., 74, 18191837, https://doi.org/10.1175/JAS-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., Á. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber–frequency domain. J. Atmos. Sci., 77, 21392162, https://doi.org/10.1175/JAS-D-19-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., M. Biasutti, and A. M. Fridlind, 2021: Evidence that horizontal moisture advection regulates the ubiquitous amplification of rainfall variability over tropical oceans. J. Atmos. Sci., 78, 529547, https://doi.org/10.1175/JAS-D-20-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Á. F. Adames, M. Zhao, D. Waliser, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden–Julian oscillation. J. Climate, 31, 42154224, https://doi.org/10.1175/JCLI-D-17-0671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and C. Zhang, 2021: Core dynamics of the MJO. J. Atmos. Sci., 78, 229248, https://doi.org/10.1175/JAS-D-20-0193.1.

  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J. Atmos. Sci., 68, 6174, https://doi.org/10.1175/2010JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12, 364373, https://doi.org/10.3402/tellusa.v12i4.9420.

  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393408, https://doi.org/10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, https://doi.org/10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, Z., S. Wang, J. Nie, and A. Sobel, 2019: The impact of the QBO on MJO convection in cloud-resolving simulations. J. Atmos. Sci., 76, 669688, https://doi.org/10.1175/JAS-D-18-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., and Á. F. Adames, 2021: 2-day westward-propagating inertio-gravity waves during GoAmazon. J. Atmos. Sci., 78, 37273743, https://doi.org/10.1175/JAS-D-20-0358.1.

    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., G. N. Kiladis, J. Dias, P. L. Silva Dias, and M. Gehne, 2021: Convectively coupled Kelvin waves over tropical South America. J. Climate, 34, 65316547, https://doi.org/10.1175/JCLI-D-20-0662.1, in press.

    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., Á. F. Adames, and F. Ahmed, 2022: Westward-propagating moisture mode over the tropical Western Hemisphere. Geophys. Res. Lett., 49, e2022GL097799, https://doi.org/10.1029/2022GL097799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Gray, 1980: Mass divergence in tropical weather systems paper II: Large-scale controls on convection. Quart. J. Roy. Meteor. Soc., 106, 517538, https://doi.org/10.1002/qj.49710644909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogrosky, H. R., and S. N. Stechmann, 2015: Assessing the equatorial long-wave approximation: Asymptotics and observational data analysis. J. Atmos. Sci., 72, 48214843, https://doi.org/10.1175/JAS-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2017: Successive MJO propagation in MERRA-2 reanalysis. Geophys. Res. Lett., 44, 51785186, https://doi.org/10.1002/2017GL073399.

  • Raymond, D. J., 1992: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 9871015, https://doi.org/10.1002/qj.49711850708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, https://doi.org/10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, https://doi.org/10.1256/qj.03.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, https://doi.org/10.1029/2006GL028607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, https://doi.org/10.1175/2008JCLI2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst., 3, M08003, https://doi.org/10.1029/2011MS000079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, https://doi.org/10.1002/qj.125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., Ž. Fuchs, S. Gjorgjievska, and S. Sessions, 2015: Balanced dynamics and convection in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 10931116, https://doi.org/10.1002/2015MS000467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and C. Hohenegger, 2018: Diurnal circulation adjustment and organized deep convection. J. Climate, 31, 48994916, https://doi.org/10.1175/JCLI-D-17-0693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rushley, S. S., D. Kim, C. S. Bretherton, and M.-S. Ahn, 2018: Reexamining the nonlinear moisture-precipitation relationship over the tropical oceans. Geophys. Res. Lett., 45, 11331140, https://doi.org/10.1002/2017GL076296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2015: On the convective coupling and moisture organization of east Pacific easterly waves. J. Atmos. Sci., 72, 38503870, https://doi.org/10.1175/JAS-D-15-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, https://doi.org/10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 31483157, https://doi.org/10.1175/1520-0469(2001)058<3148:PVIAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, S. D., and D. Yang, 2020: The lightness of water vapor helps to stabilize tropical climate. Sci. Adv., 6, eaba1951, https://doi.org/10.1126/sciadv.aba1951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, https://doi.org/10.1175/2007JAS2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sugaya, D. J. Raymond, and A. H. Sobel, 2010: Multiple equilibria in a cloud-resolving model using the weak temperature gradient approximation. J. Geophys. Res., 115, D12110, https://doi.org/10.1029/2009JD013376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., M. J. Herman, and S. Sentic, 2015: Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations. J. Adv. Model. Earth Syst., 7, 712738, https://doi.org/10.1002/2015MS000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sentic, and D. J. Raymond, 2019: Balanced dynamics and moisture quasi-equilibrium in DYNAMO convection. J. Atmos. Sci., 76, 27812799, https://doi.org/10.1175/JAS-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snide, C. E., Á. F. Adames, S. W. Powell, and V. C. Mayta, 2022: The role of large-scale moistening by adiabatic lifting in the Madden–Julian oscillation convective onset. J. Climate, 35, 269284, https://doi.org/10.1175/JCLI-D-21-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2003: Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, 55A, 4560, https://doi.org/10.3402/tellusa.v55i1.12084.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and D. Kim, 2012: The MJO-Kelvin wave transition. Geophys. Res. Lett., 39, L20808, https://doi.org/10.1029/2012GL053380.

  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, https://doi.org/10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Vol. 2. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large-scale dynamics. J. Geophys. Res. Atmos., 118, 62906301, https://doi.org/10.1002/jgrd.50510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden–Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., J. Dias, G. Kiladis, F. Ahmed, S. W. Powell, E. Maloney, and M. Branson, 2020: Interactions between moisture and tropical convection. Part I: The coevolution of moisture and convection. J. Atmos. Sci., 77, 17831799, https://doi.org/10.1175/JAS-D-19-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and M. Bonazzola, 2009: Scale analysis for large-scale tropical atmospheric dynamics. J. Atmos. Sci., 66, 159172, https://doi.org/10.1175/2008JAS2687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, https://doi.org/10.1175/JAS-D-11-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51, 18951914, https://doi.org/10.1175/1520-0469(1994)051<1895:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 657 653 18
Full Text Views 291 291 7
PDF Downloads 385 385 9

The Basic Equations under Weak Temperature Gradient Balance: Formulation, Scaling, and Types of Convectively Coupled Motions

Ángel F. AdamesaDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ángel F. Adames in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The weak temperature gradient (WTG) approximation is extended to the basic equations on a rotating plane. The circulation is decomposed into a diabatic component that satisfies WTG balance exactly and a deviation from this balance. Scale analysis of the decomposed basic equations reveals a spectrum of motions, including unbalanced inertio-gravity waves and several systems that are in approximate WTG balance. The balanced systems include equatorial moisture modes with features reminiscent of the MJO, off-equatorial moisture modes that resemble tropical depression disturbances, “mixed systems” in which temperature and moisture play comparable roles in their thermodynamics, and moist quasigeostrophic motions. In the balanced systems the deviation from WTG balance is quasi nondivergent, in nonlinear balance, and evolves in accordance to the vorticity equation. The evolution of the strictly balanced WTG circulation is in turn described by the divergence equation. WTG balance restricts the flow to evolve in the horizontal plane by making the isobars impermeable to vorticity and divergence, even in the presence of diabatically driven vertical motions. The vorticity and divergence equations form a closed system of equations when the irrotational circulation is in WTG balance and the nondivergent circulation is in nonlinear balance. The resulting “WTG equations” may elucidate how interactions between diabatic processes and the horizontal circulation shape slowly evolving tropical motions.

Significance Statement

Many gaps in our understanding of tropical weather systems still exist and there are still many opportunities to improve their forecasting. We seek to further our understanding of the tropics by extending a framework known as the “weak temperature gradient approximation” to all of the equations for atmospheric flow. Doing this reveals a variety of motions whose scales are similar to observed tropical weather systems. We also show that two equations describe the evolution of slow systems: one that describes tropical thunderstorms and one for the rotating horizontal winds. The two equations may help us understand the dynamics of slowly evolving tropical systems.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ángel F. Adames, angel.adamescorraliza@wisc.edu

Abstract

The weak temperature gradient (WTG) approximation is extended to the basic equations on a rotating plane. The circulation is decomposed into a diabatic component that satisfies WTG balance exactly and a deviation from this balance. Scale analysis of the decomposed basic equations reveals a spectrum of motions, including unbalanced inertio-gravity waves and several systems that are in approximate WTG balance. The balanced systems include equatorial moisture modes with features reminiscent of the MJO, off-equatorial moisture modes that resemble tropical depression disturbances, “mixed systems” in which temperature and moisture play comparable roles in their thermodynamics, and moist quasigeostrophic motions. In the balanced systems the deviation from WTG balance is quasi nondivergent, in nonlinear balance, and evolves in accordance to the vorticity equation. The evolution of the strictly balanced WTG circulation is in turn described by the divergence equation. WTG balance restricts the flow to evolve in the horizontal plane by making the isobars impermeable to vorticity and divergence, even in the presence of diabatically driven vertical motions. The vorticity and divergence equations form a closed system of equations when the irrotational circulation is in WTG balance and the nondivergent circulation is in nonlinear balance. The resulting “WTG equations” may elucidate how interactions between diabatic processes and the horizontal circulation shape slowly evolving tropical motions.

Significance Statement

Many gaps in our understanding of tropical weather systems still exist and there are still many opportunities to improve their forecasting. We seek to further our understanding of the tropics by extending a framework known as the “weak temperature gradient approximation” to all of the equations for atmospheric flow. Doing this reveals a variety of motions whose scales are similar to observed tropical weather systems. We also show that two equations describe the evolution of slow systems: one that describes tropical thunderstorms and one for the rotating horizontal winds. The two equations may help us understand the dynamics of slowly evolving tropical systems.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ángel F. Adames, angel.adamescorraliza@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 513 KB)
Save