Tropical Cyclone Size Is Strongly Limited by the Rhines Scale: Experiments with a Barotropic Model

Kuan-Yu Lu aDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Kuan-Yu Lu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9071-0839
and
Daniel R. Chavas aDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Daniel R. Chavas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent work found evidence using aquaplanet experiments that tropical cyclone (TC) size on Earth is limited by the Rhines scale, which depends on the planetary vorticity gradient β. This study aims to examine how the Rhines scale limits the size of an individual TC. The traditional Rhines scale is first reexpressed as a Rhines speed to characterize how the effect of β varies with radius in a vortex whose wind profile is known. The framework is used to define the vortex Rhines scale, which is the transition radius that divides the vortex into a vortex-dominant region at smaller radii, where the axisymmetric circulation is steady, and a wave-dominant region at larger radii, where the circulation stimulates planetary Rossby waves and dissipates. Experiments are performed using a simple barotropic model on a β plane initialized with a TC-like axisymmetric vortex defined using a recently developed theoretical TC wind profile model. The gradient β and initial vortex size are each systematically varied to investigate the detailed responses of the TC-like vortex to β. Results show that the vortex shrinks toward an equilibrium size that closely follows the vortex Rhines scale. A larger initial vortex relative to its vortex Rhines scale will shrink faster. The shrinking time scale is well described by the vortex Rhines time scale, which is defined as the overturning time scale of the circulation at the vortex Rhines scale and is shown to be directly related to the Rossby wave group velocity. The relationship between our idealized results and the real Earth is discussed. Results may generalize to other eddy circulations, such as the extratropical cyclone.

Significance Statement

Tropical cyclones vary in size significantly on Earth, but how large a tropical cyclone could potentially be is still not understood. The variation of the Coriolis parameter with latitude is known to limit the size of turbulent circulations, but its effect on tropical cyclones has not been studied. This study derives a new parameter related to this concept called the “vortex Rhines scale” and shows in a simple model how and why storms will tend to shrink toward this size. These results help explain why tropical cyclone size tends to increase slowly with latitude on Earth and can help us understand what sets the size of tropical cyclones on Earth in general.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuan-Yu Lu, lu711@purdue.edu

Abstract

Recent work found evidence using aquaplanet experiments that tropical cyclone (TC) size on Earth is limited by the Rhines scale, which depends on the planetary vorticity gradient β. This study aims to examine how the Rhines scale limits the size of an individual TC. The traditional Rhines scale is first reexpressed as a Rhines speed to characterize how the effect of β varies with radius in a vortex whose wind profile is known. The framework is used to define the vortex Rhines scale, which is the transition radius that divides the vortex into a vortex-dominant region at smaller radii, where the axisymmetric circulation is steady, and a wave-dominant region at larger radii, where the circulation stimulates planetary Rossby waves and dissipates. Experiments are performed using a simple barotropic model on a β plane initialized with a TC-like axisymmetric vortex defined using a recently developed theoretical TC wind profile model. The gradient β and initial vortex size are each systematically varied to investigate the detailed responses of the TC-like vortex to β. Results show that the vortex shrinks toward an equilibrium size that closely follows the vortex Rhines scale. A larger initial vortex relative to its vortex Rhines scale will shrink faster. The shrinking time scale is well described by the vortex Rhines time scale, which is defined as the overturning time scale of the circulation at the vortex Rhines scale and is shown to be directly related to the Rossby wave group velocity. The relationship between our idealized results and the real Earth is discussed. Results may generalize to other eddy circulations, such as the extratropical cyclone.

Significance Statement

Tropical cyclones vary in size significantly on Earth, but how large a tropical cyclone could potentially be is still not understood. The variation of the Coriolis parameter with latitude is known to limit the size of turbulent circulations, but its effect on tropical cyclones has not been studied. This study derives a new parameter related to this concept called the “vortex Rhines scale” and shows in a simple model how and why storms will tend to shrink toward this size. These results help explain why tropical cyclone size tends to increase slowly with latitude on Earth and can help us understand what sets the size of tropical cyclones on Earth in general.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuan-Yu Lu, lu711@purdue.edu
Save
  • Chai, J., and G. K. Vallis, 2014: The role of criticality on the horizontal and vertical scales of extratropical eddies in a dry GCM. J. Atmos. Sci., 71, 23002318, https://doi.org/10.1175/JAS-D-13-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, https://doi.org/10.1175/MWR-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., 2022: Code for tropical cyclone wind profile model of Chavas et al (2015, JAS). Purdue University Research Repository, https://doi.org/10.4231/CZ4P-D448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 16631680, https://doi.org/10.1175/JAS-D-13-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and N. Lin, 2016: A model for the complete radial structure of the tropical cyclone wind field. Part II: Wind field variability. J. Atmos. Sci., 73, 30933113, https://doi.org/10.1175/JAS-D-15-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Reed, 2019: Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size. J. Atmos. Sci., 76, 22572274, https://doi.org/10.1175/JAS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, and K. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, https://doi.org/10.1175/JAS-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, W. Dong, and Y. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29, 29232939, https://doi.org/10.1175/JCLI-D-15-0731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2015: The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci., 72, 38913907, https://doi.org/10.1175/JAS-D-15-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2016: The latitudinal dependence of the oceanic barotropic eddy kinetic energy and macroturbulence energy transport. Geophys. Res. Lett., 43, 27232731, https://doi.org/10.1002/2016GL067847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., T. Dror, and Y. Kaspi, 2016: Barotropic kinetic energy and enstrophy transfers in the atmosphere. Geophys. Res. Lett., 43, 77257734, https://doi.org/10.1002/2016GL070350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Tropical cyclone motion in a nondivergent barotropic model. Mon. Wea. Rev., 113, 11991210, https://doi.org/10.1175/1520-0493(1985)113<1199:TCMIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eames, I., and J.-B. Flór, 2002: The dynamics of monopolar vortices on a topographic beta plane. J. Fluid Mech., 456, 353–376, https://doi.org/10.1017/S0022112001007728.

    • Crossref
    • Export Citation
  • Emanuel, K., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, Vol. 8, Cambridge University Press, 165–191.

    • Crossref
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and K. Haines, 1994: The decay of modons due to Rossby wave radiation. Phys. Fluids, 6, 3487–3497, https://doi.org/10.1063/1.868405.

    • Crossref
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: Planetary waves and their interaction with smaller scales. The Life Cycles of Extratropical Cyclones, Amer. Meteor. Soc., 101–109, https://doi.org/10.1007/978-1-935704-09-6_11.

    • Crossref
    • Export Citation
  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952, https://doi.org/10.1175/1520-0469(1996)053<0946:ASTFHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, T.-L., G. A. Vecchi, W. Yang, I. M. Held, and S. T. Garner, 2020: Large-scale control on the frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global atmospheric models. Climate Dyn., 55, 3177–3196, https://doi.org/10.1007/s00382-020-05446-5.

    • Crossref
    • Export Citation
  • Irish, J. L., D. T. Resio, and D. Divoky, 2011: Statistical properties of hurricane surge along a coast. J. Geophys. Res., 116, C10007, https://doi.org/10.1029/2010JC006626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112, 12311250, https://doi.org/10.1002/qj.49711247417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., J. A. Knaff, S. J. Kusselson, M. Turk, R. R. Ferraro, and R. J. Kuligowski, 2005: The tropical rainfall potential (trap) technique. Part I: Description and examples. Wea. Forecasting, 20, 456464, https://doi.org/10.1175/WAF860.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, L03806, https://doi.org/10.1029/2009GL041615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, https://doi.org/10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krouse, K. D., A. H. Sobel, and L. M. Polvani, 2008: On the wavelength of the Rossby waves radiated by tropical cyclones. J. Atmos. Sci., 65, 644654, https://doi.org/10.1175/2007JAS2402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, https://doi.org/10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lam, J. S.-L., and D. G. Dritschel, 2001: On the beta-drift of an initially circular vortex patch. J. Fluid Mech., 436, 107129, https://doi.org/10.1017/S0022112001003974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60, 29072916, https://doi.org/10.1175/1520-0469(2003)060<2907:DKEDAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and J. L. McBride, 2021: Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size. Int. J. Climatol., 41, E1217E1235, https://doi.org/10.1002/joc.6763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G. L., 1997: The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech., 346, 149179, https://doi.org/10.1017/S0022112097006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCartney, G., T. Hacker, and B. Yang, 2014: Empowering faculty: A campus cyberinfrastructure strategy for research communities. Educause Review, https://er.educause.edu/articles/2014/7/empowering-faculty-a-campus-cyberinfrastructure-strategy-for-research-communities.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, N. R., 1998: The decay of cyclonic eddies by Rossby wave radiation. J. Fluid Mech., 361, 237252, https://doi.org/10.1017/S0022112098008696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, https://doi.org/10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and R. W. Burpee, 1968: Experiments in barotropic hurricane track forecasting. J. Appl. Meteor. Climatol., 7, 313323, https://doi.org/10.1175/1520-0450(1968)007<0313:EIBHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., and R. E. Hart, 2015: An examination of the thermodynamic impacts of western North Pacific tropical cyclones on their tropical tropospheric environment. J. Climate, 28, 75297560, https://doi.org/10.1175/JCLI-D-14-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, https://doi.org/10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 1348, https://doi.org/10.1017/S0022112002001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., H. C. Weber, and A. Kraus, 1995: On the symmetric circulation of a moving hurricane. Quart. J. Roy. Meteor. Soc., 121, 945952, https://doi.org/10.1002/qj.49712152412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922, https://doi.org/10.5194/npg-13-9-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and G. R. Flierl, 1994: Intense vortex motion on the beta plane: Development of the beta gyres. J. Atmos. Sci., 51, 773790, https://doi.org/10.1175/1520-0469(1994)051<0773:IVMOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., J. S. Hesthaven, J. P. Lynov, and J. J. Rasmussen, 1994: Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech., 268, 103131, https://doi.org/10.1017/S002211209400128X.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 773 pp.

  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Li, and L. Wu, 1997: Direction of hurricane beta drift in horizontally sheared flows. J. Atmos. Sci., 54, 14621471, https://doi.org/10.1175/1520-0469(1997)054<1462:DOHBDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 10321043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, https://doi.org/10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, https://doi.org/10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wu, L., W. Tian, Q. Liu, J. Cao, and J. A. Knaff, 2015: Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific. J. Climate, 28, 95019506, https://doi.org/10.1175/JCLI-D-15-0628.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., I. M. Held, and S. T. Garner, 2014: Parameter study of tropical cyclones in rotating radiative–convective equilibrium with column physics and resolution of a 25-km GCM. J. Atmos. Sci., 71, 10581069, https://doi.org/10.1175/JAS-D-13-0190.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 665 0 0
Full Text Views 1059 553 53
PDF Downloads 970 421 25