• Andreas, E. L., K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459486, https://doi.org/10.1023/A:1002793831076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., P. K. Hall, A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, 2008: Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res., 113, D20109, https://doi.org/10.1029/2008JD010311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggart, M., and Coauthors, 2021: Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale. Atmos. Chem. Phys., 21, 13 68713 711, https://doi.org/10.5194/acp-21-13687-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orographic induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C., L. X. Hui, Z. Mi, L. S. Dong, and X. J. Ping, 2017: Correlation analysis of the urban heat island effect and its impact factors in China. Environ. Sci., 38, 39873997, https://doi.org/10.13227/j.hjkx.201702127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Export Citation
  • Chen, W., Y. Zhang, W. Gao, and D. Zhou, 2016: The investigation of urbanization and urban heat island in Beijing based on remote sensing. Procedia Soc. Behav. Sci., 216, 141150, https://doi.org/10.1016/j.sbspro.2015.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., and W. Shi, 2013: Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. Int. J. Remote Sens., 34, 55035517, https://doi.org/10.1080/01431161.2013.792966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Shen, and G. Chen, 2021: Influence of coastal marine boundary layer jets on rainfall in South China. Adv. Atmos. Sci., 39, 782801, https://doi.org/10.1007/s00376-021-1195-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duarte, H., M. Leclerc, and G. Zhang, 2012: Assessing the shear-sheltering theory applied to low-level jets in the nocturnal stable boundary layer. Theor. Appl. Climatol., 110, 359371, https://doi.org/10.1007/s00704-012-0621-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., T. W. Owen, D. R. Easterling, and P. F. Jamason, 1999: Temperature trends of the U.S. historical climatology network based on satellite-designated land use/land cover. J. Climate, 12, 13441348, https://doi.org/10.1175/1520-0442(1999)012<1344:TTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannaros, C., A. Nenes, T. M. Giannaros, K. Kourtidis, and D. Melas, 2018: A comprehensive approach for the simulation of the urban heat island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmos. Res., 201, 86101, https://doi.org/10.1016/j.atmosres.2017.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y. X., C. G. Wang, J. D. Yan, and X. Y. Li, 2017: Development and application of new boundary layer meteorological sounding system (in Chinese). Meteor. Sci. Technol., 45, 804810, https://doi.org/10.19517/j.1671-6345.20160615.

    • Crossref
    • Export Citation
  • He, B., 2018: Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Climate, 24, 2633, https://doi.org/10.1016/j.uclim.2018.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200205, https://doi.org/10.3402/tellusa.v19i2.9766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., J. Dudhia, and S. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L., 1833: Climate of London Deduced From Meteorological Observation. 3rd ed. Harvey and Darton, 383 pp.

    • Crossref
    • Export Citation
  • Hu, X., P. M. Klein, M. Xue, J. K. Lundquist, F. Zhang, and Y. Qi, 2013: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 17791802, https://doi.org/10.1175/JAMC-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Jahangir, M. S., and S. Moghim, 2019: Assessment of the urban heat island in the city of Tehran using reliability methods. Atmos. Res., 225, 144156, https://doi.org/10.1016/j.atmosres.2019.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., 2008: Investigation of low-level-jets over rural and urban areas using two sodars. IOP Conf. Ser.: Earth Environ. Sci., 1, 012040, https://doi.org/10.1088/1755-1315/1/1/012040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., and R. D. Kouznetsov, 2012: Low-level jets in the Moscow region in summer and winter observed with a sodar network. Bound.-Layer Meteor., 143, 159175, https://doi.org/10.1007/s10546-011-9639-8.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X. Hu, A. Shapiro, and M. Xue, 2016: Linkages between boundary-layer structure and the development of nocturnal low-level jets in central Oklahoma. Bound.-Layer Meteor., 158, 383408, https://doi.org/10.1007/s10546-015-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolokotsa, D., A. Psomas, and E. S. Karapidakis, 2009: Urban heat island in southern Europe: The case study of Hania, Crete. Sol. Energy, 83, 18711883, https://doi.org/10.1016/j.solener.2009.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., W. Yan, G. Zheng, H. Yin, G. Cavan, W. Zhan, N. Zhang, and L. Cheng, 2016: Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteor., 217, 2234, https://doi.org/10.1016/j.agrformet.2015.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. R., R. B. Stull, and W. S. Irvine, 1979: Clear air turbulence forecasting techniques. Air Force Global Weather Central Rep. AFGWCffN-79/001, 73 pp.

    • Crossref
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., C. Zhang, W. Li, R. O. Anyah, and J. Tian, 2019: Exploring the trend, prediction and driving forces of aerosols using satellite and ground data, and implications for climate change mitigation. J. Cleaner Prod., 223, 238251, https://doi.org/10.1016/j.jclepro.2019.03.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. Y., H. Zhang, and W. Kainz, 2012: Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf., 19, 127138, https://doi.org/10.1016/j.jag.2012.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K., X. Li, S. Wang, and Y. Li, 2020: Investigating the impacts of driving factors on urban heat islands in southern China from 2003 to 2015. J. Cleaner Prod., 254, 120141, https://doi.org/10.1016/j.jclepro.2020.120141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, T., Y. Zhou, C. Zhou, S. Haynie, T. Pei, and T. Xu, 2015: Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ., 158, 453464, https://doi.org/10.1016/j.rse.2014.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, G., 1958: On the frequency of snowfall in metropolitan England. Quart. J. Roy. Meteor. Soc., 84, 7072, https://doi.org/10.1002/qj.49708435910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., J. Guo, S. Liu, W. Wei, G. Zhang, Y. Lin, and P. Zhai, 2018: The climatology of low‐level jet in Beijing and Guangzhou, China. J. Geophys. Res. Atmos., 123, 28162830, https://doi.org/10.1002/2017JD027321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., S. Liu, L. Sheng, S. Huang, and J. Li, 2019: Influence of boundary layer structure and low-level jet on PM2.5 pollution in Beijing: A case study. Int. J. Environ. Res. Public Health, 16, 616, https://doi.org/10.3390/ijerph16040616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohan, M., Y. Kikegawa, B. R. Gurjar, S. Bhati, and N. Kolli, 2013: Assessment of urban heat island effect for different land use–land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theor. Appl. Climatol., 112, 647658, https://doi.org/10.1007/s00704-012-0758-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortarini, L., D. Cava, U. Giostra, O. C. Acevedo, L. G. Martins, P. E. De Oliveira, and D. Anfossi, 2018: Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132‐m tower. Quart. J. Roy. Meteor. Soc., 144, 172183, https://doi.org/10.1002/qj.3192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1976: The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14, 268277, https://doi.org/10.1080/00046973.1976.9648422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 520 pp.

    • Crossref
    • Export Citation
  • Ren, G. Y., Z. Y. Chu, Z. H. Chen, and Y. Y. Ren, 2007: Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett., 34, L05711, https://doi.org/10.1029/2006GL027927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y., and J. Baik, 2012: Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteor. Climatol., 51, 842854, https://doi.org/10.1175/JAMC-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, https://doi.org/10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijarvi, H. I., 2011: Anti-heat island circulations and low-level jets on a sea gulf. Tellus, 63A, 10071013, https://doi.org/10.1111/j.1600-0870.2011.00531.x.

    • Crossref
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN475+STR, 113 pp., https://doi.org/10.13140/RG.2.1.2310.6645.

    • Crossref
    • Export Citation
  • Souch, C., and S. Grimmond, 2006: Applied climatology: Urban climate. Prog. Phys. Geogr., 30, 270279, https://doi.org/10.1191/0309133306pp484pr.

  • Steeneveld, G. J., S. Koopmans, B. G. Heusinkveld, L. W. A. vanHove, and A. A. M. Holtslag, 2011: Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res., 116, D20129, https://doi.org/10.1029/2011JD015988.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, J. T., S. D. Rabenhorst, J. Dreessen, T. J. McGee, R. Delgado, L. Twigg, and G. Sumnicht, 2017: Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmos. Environ., 158, 160171, https://doi.org/10.1016/j.atmosenv.2017.03.039.

    • Search Google Scholar
    • Export Citation
  • Wang, K., S. Jiang, J. Wang, C. Zhou, X. Wang, and X. Lee, 2017: Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. J. Geophys. Res. Atmos., 122, 21312154, https://doi.org/10.1002/2016JD025304.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and D. Li, 2021: Urban heat islands during heat waves: A comparative study between Boston and Phoenix. J. Appl. Meteor. Climatol., 60, 621641, https://doi.org/10.1175/JAMC-D-20-0132.1.

    • Search Google Scholar
    • Export Citation
  • Wei, W., B. Wu, X. Ye, H. Wang, and H. Zhang, 2013: Characteristics and mechanisms of low-level jets in the Yangtze River delta of China. Bound.-Layer Meteor., 149, 403424, https://doi.org/10.1007/s10546-013-9852-8.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and J. Zhang, 2018: Assessing population movement impacts on urban heat island of Beijing during the Chinese New Year holiday: Effects of meteorological conditions. Theor. Appl. Climatol., 131, 12031210, https://doi.org/10.1007/s00704-017-2043-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Z. Meng, 2019: Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon. Wea. Rev., 147, 44614480, https://doi.org/10.1175/MWR-D-19-0110.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Miao, Y. Dai, and R. Bornstein, 2017: Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos., 122, 78517868, https://doi.org/10.1002/2017JD026614.

    • Search Google Scholar
    • Export Citation
  • Zhou, M., S. Qu, Y. Li, and X. Song, 1980: Characteristics of heat island and heat island circulation in Beijing area (in Chinese). Environ. Sci., 5, 420, https://doi.org/10.13227/j.hjkx.1980.05.003.

  • Zhou, S. Z., and J. Shu, 1994: Urban Climatology (in Chinese). China Meteorological Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 354 350 22
Full Text Views 100 97 1
PDF Downloads 140 129 3

Observation and Simulation of Low-Level Jet Impacts on 3D Urban Heat Islands in Beijing: A Case Study

Yi LinaKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yi Lin in
Current site
Google Scholar
PubMed
Close
,
Chenggang WangaKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chenggang Wang in
Current site
Google Scholar
PubMed
Close
,
Jiade YanaKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jiade Yan in
Current site
Google Scholar
PubMed
Close
,
Ju LibInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Ju Li in
Current site
Google Scholar
PubMed
Close
, and
Songwei HecEmergency Early Warning Release and Weather Modification Center of Guangdong, Guangzhou, China

Search for other papers by Songwei He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, we focused on the impacts of the planetary boundary layer (PBL) low-level jet (LLJ) on the horizontal distribution, vertical development, and 3D structure of urban heat island (UHI). Observational datasets were collected from 224 automatic weather stations (AWSs), and an intensive sounding experiment was conducted in Beijing from 28 August to 2 September 2016. Three-dimensional simulations were operated by the Weather Research and Forecasting (WRF) Model. The results show the following: Ri was smaller than 0.25 at both urban and suburban stations near the surface when the LLJ was present. Through turbulent mixing, the LLJ extended the horizontal distribution of the canopy UHI downwind and increased the total UHI area by approximately 1 × 103 km2. The temperature lapse rate in the urban area was 0.7°C (100 m)−1 with the LLJ, twice that in the absence of an LLJ. The jet enhanced the vertical mixing above the urban area, accompanied by a near-surface TKE up to 0.52 m2 s−2, elevating the vertical UHI development height to 200 m. The LLJ is capable of increasing the temperature of the downwind urban area by a maximum of 8.5°C h−1 through warm advection. The temperature advection in the upper air caused by the LLJ also tilted the 3D UHI structure as a plume. Results reproduced the process by which the LLJ affect the 3D UHI structure through turbulence and advection, and could also provide ideas regarding the influence of the LLJ in other PBL processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chenggang Wang, wcg@nuist.edu.cn

Abstract

In this study, we focused on the impacts of the planetary boundary layer (PBL) low-level jet (LLJ) on the horizontal distribution, vertical development, and 3D structure of urban heat island (UHI). Observational datasets were collected from 224 automatic weather stations (AWSs), and an intensive sounding experiment was conducted in Beijing from 28 August to 2 September 2016. Three-dimensional simulations were operated by the Weather Research and Forecasting (WRF) Model. The results show the following: Ri was smaller than 0.25 at both urban and suburban stations near the surface when the LLJ was present. Through turbulent mixing, the LLJ extended the horizontal distribution of the canopy UHI downwind and increased the total UHI area by approximately 1 × 103 km2. The temperature lapse rate in the urban area was 0.7°C (100 m)−1 with the LLJ, twice that in the absence of an LLJ. The jet enhanced the vertical mixing above the urban area, accompanied by a near-surface TKE up to 0.52 m2 s−2, elevating the vertical UHI development height to 200 m. The LLJ is capable of increasing the temperature of the downwind urban area by a maximum of 8.5°C h−1 through warm advection. The temperature advection in the upper air caused by the LLJ also tilted the 3D UHI structure as a plume. Results reproduced the process by which the LLJ affect the 3D UHI structure through turbulence and advection, and could also provide ideas regarding the influence of the LLJ in other PBL processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chenggang Wang, wcg@nuist.edu.cn
Save